If ${\text{y = }}{{\text{x}}^{\text{x}}}$ , prove that
$\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}$
Answer
Verified
476.4k+ views
Hint: First we apply the logarithm function on the both sides of the equation ${\text{y = }}{{\text{x}}^{\text{x}}}$, then we’ll proceed towards finding the first derivative of the equation with respect to the independent variable i.e. x. similarly, we’ll find the double derivative of the function. After getting the first and second derivates of the function we’ll use the substitution method to eliminate the terms that are not required to get our answer.
Complete step by step answer:
Given data: ${\text{y = }}{{\text{x}}^{\text{x}}}$
On applying logarithm function on both sides, we get
${\text{ln(y) = ln(}}{{\text{x}}^{\text{x}}}{\text{)}}$
It is well known that, ${\text{ln}}{{\text{a}}^{\text{b}}}{\text{ = blna}}$,
$ \Rightarrow {\text{lny = xln(x)}}$
Now, differentiating both sides with respect to x,
Using, chain rule and multiplication rule i.e.
$
\dfrac{{{\text{df(z)}}}}{{{\text{dx}}}}{\text{ = f'(z)}}\dfrac{{{\text{dz}}}}{{{\text{dx}}}}{\text{, and}} \\
{\text{d(uv) = udv + vdu}} \\
$
$
\dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = x}}\left( {\dfrac{{\text{1}}}{{\text{x}}}} \right){\text{ + lnx}} \\
\Rightarrow \dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = 1 + lnx}}..........{\text{(i)}} \\
$
Multiplying ‘y’ with the whole equation
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = y + ylnx}}................{\text{(ii)}}$
Again, on differentiating both sides with respect to x,
$
\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ + }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{lnx}} \\
\Rightarrow \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{(1 + lnx) + }}\dfrac{{\text{y}}}{{\text{x}}}..........{\text{(iii)}} \\
$
Now, substituting the value of (1+lnx) from equation(i) to equation(iii), we’ll be left with
\[
\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{(}}\dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{) + }}\dfrac{{\text{y}}}{{\text{x}}} \\
\Rightarrow \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ + }}\dfrac{{\text{y}}}{{\text{x}}} \\
\Rightarrow \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}} \\
\]
Hence, we obtained our equation i.e. \[\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}\]
Note: Alternative solution for this question can be done by substituting the value of first and second derivatives directly to the equation that has to be proved.
\[\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}\]
On substituting the value of $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ and }}\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}$ to the left-hand side of the equation, we get,
$
\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{(}}\dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{) + }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(y + ylnx)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}} \\
{\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{{{\text{y}}^{\text{2}}}}}{{\text{y}}}{{\text{(1 + lnx)}}^{\text{2}}} \\
$
On simplification we get,
${\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}$
On substituting the value of $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$, we have
\[{\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(y + ylnx)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}\]
On taking \[{{\text{y}}^{\text{2}}}\]out of the first term, we get,
\[{\text{ = }}\dfrac{{{{\text{y}}^{\text{2}}}}}{{\text{y}}}{{\text{(1 + lnx)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}\]
\[{\text{ = y(1 + lnx}}{{\text{)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}\]
\[{\text{ = 0}}\]
i.e. equal to the right-hand side
Therefore, $\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}$, holds of ${\text{y = }}{{\text{x}}^{\text{x}}}$
Complete step by step answer:
Given data: ${\text{y = }}{{\text{x}}^{\text{x}}}$
On applying logarithm function on both sides, we get
${\text{ln(y) = ln(}}{{\text{x}}^{\text{x}}}{\text{)}}$
It is well known that, ${\text{ln}}{{\text{a}}^{\text{b}}}{\text{ = blna}}$,
$ \Rightarrow {\text{lny = xln(x)}}$
Now, differentiating both sides with respect to x,
Using, chain rule and multiplication rule i.e.
$
\dfrac{{{\text{df(z)}}}}{{{\text{dx}}}}{\text{ = f'(z)}}\dfrac{{{\text{dz}}}}{{{\text{dx}}}}{\text{, and}} \\
{\text{d(uv) = udv + vdu}} \\
$
$
\dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = x}}\left( {\dfrac{{\text{1}}}{{\text{x}}}} \right){\text{ + lnx}} \\
\Rightarrow \dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = 1 + lnx}}..........{\text{(i)}} \\
$
Multiplying ‘y’ with the whole equation
$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = y + ylnx}}................{\text{(ii)}}$
Again, on differentiating both sides with respect to x,
$
\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ + }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ + }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{lnx}} \\
\Rightarrow \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{(1 + lnx) + }}\dfrac{{\text{y}}}{{\text{x}}}..........{\text{(iii)}} \\
$
Now, substituting the value of (1+lnx) from equation(i) to equation(iii), we’ll be left with
\[
\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{(}}\dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{) + }}\dfrac{{\text{y}}}{{\text{x}}} \\
\Rightarrow \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ + }}\dfrac{{\text{y}}}{{\text{x}}} \\
\Rightarrow \dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}} \\
\]
Hence, we obtained our equation i.e. \[\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}\]
Note: Alternative solution for this question can be done by substituting the value of first and second derivatives directly to the equation that has to be proved.
\[\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}\]
On substituting the value of $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ and }}\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}$ to the left-hand side of the equation, we get,
$
\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{(}}\dfrac{{\text{1}}}{{\text{y}}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{) + }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(y + ylnx)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}} \\
{\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{{{\text{y}}^{\text{2}}}}}{{\text{y}}}{{\text{(1 + lnx)}}^{\text{2}}} \\
$
On simplification we get,
${\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}$
On substituting the value of $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$, we have
\[{\text{ = }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(y + ylnx)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}\]
On taking \[{{\text{y}}^{\text{2}}}\]out of the first term, we get,
\[{\text{ = }}\dfrac{{{{\text{y}}^{\text{2}}}}}{{\text{y}}}{{\text{(1 + lnx)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}\]
\[{\text{ = y(1 + lnx}}{{\text{)}}^{\text{2}}}{\text{ - y(1 + lnx}}{{\text{)}}^{\text{2}}}\]
\[{\text{ = 0}}\]
i.e. equal to the right-hand side
Therefore, $\dfrac{{{{\text{d}}^{\text{2}}}{\text{y}}}}{{{\text{d}}{{\text{x}}^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{\text{y}}}{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}^{\text{2}}}{\text{ - }}\dfrac{{\text{y}}}{{\text{x}}}{\text{ = 0}}$, holds of ${\text{y = }}{{\text{x}}^{\text{x}}}$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE