
If y varies directly with x and y = 25 when x = 5. How do you write the direct linear variable equation and what is the constant?
Answer
538.2k+ views
Hint: We are given y varies directly with x, to find the equation for this we will first see what type of relations we have and we will learn about inverse and direct relation and using these we will find the relation suitable for our problem. We will use that directly as the relation is given as y = kx where k is a constant. Then we will use x = 5, y = 25 to find the value of k.
Complete step-by-step solution:
We are given that y varies directly with x, we are asked to write the direct linear variation equation. Before we move on to that we must learn what direct relation means. In maths, there are two types of relation, one is called direct relation and the other is indirect relation (inversely). In direct relation, two things are connecting directly means they both will behave the same way if there is a decrement in one thing then the other will decrease too and if one is increasing then other will increase too, say we have two things as A and B. They are denoted as \[A\propto B.\] The sign \['\propto '\] is called a sign of proportionality. To form an equation we need to change the proportional \[\left( \propto \right)\] to equal (=). So, we will multiply by constant. So, the equation becomes A = kB. The other type of relation is indirectly where A is moving opposite of B. If A increases, B will decrease and if A decreases B will increase. It is represented as \[A\propto \dfrac{1}{B}.\]
Now, in our problem, we have that we have two things as y and x. We also have that y is directly proportional to x. So, as we learn above, we will get, \[y\propto x.\] To change \[\propto \] to =, we will multiply by constant, say k, we will get \[y=kx.\] So, the required equation is y = kx. Now, as we have for x = 5, we have y = 25, so putting them in our equation, we get,
\[25=k\left( 5 \right)\]
Dividing both the sides by 5, we get,
\[\Rightarrow 5=k\]
So, the value of the constant k is 5.
Hence the equation is y = 5x.
Note: The graph of the direct relation will always produce a straight line. If the constant of proportionality is positive, then the graph will have a positive gradient. If the constant is negative, then the graph will have a negative gradient.
Complete step-by-step solution:
We are given that y varies directly with x, we are asked to write the direct linear variation equation. Before we move on to that we must learn what direct relation means. In maths, there are two types of relation, one is called direct relation and the other is indirect relation (inversely). In direct relation, two things are connecting directly means they both will behave the same way if there is a decrement in one thing then the other will decrease too and if one is increasing then other will increase too, say we have two things as A and B. They are denoted as \[A\propto B.\] The sign \['\propto '\] is called a sign of proportionality. To form an equation we need to change the proportional \[\left( \propto \right)\] to equal (=). So, we will multiply by constant. So, the equation becomes A = kB. The other type of relation is indirectly where A is moving opposite of B. If A increases, B will decrease and if A decreases B will increase. It is represented as \[A\propto \dfrac{1}{B}.\]
Now, in our problem, we have that we have two things as y and x. We also have that y is directly proportional to x. So, as we learn above, we will get, \[y\propto x.\] To change \[\propto \] to =, we will multiply by constant, say k, we will get \[y=kx.\] So, the required equation is y = kx. Now, as we have for x = 5, we have y = 25, so putting them in our equation, we get,
\[25=k\left( 5 \right)\]
Dividing both the sides by 5, we get,
\[\Rightarrow 5=k\]
So, the value of the constant k is 5.
Hence the equation is y = 5x.
Note: The graph of the direct relation will always produce a straight line. If the constant of proportionality is positive, then the graph will have a positive gradient. If the constant is negative, then the graph will have a negative gradient.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

Master Class 7 Social Science: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

Repeated addition of the same number is called a addition class 7 maths CBSE

Write a summary of the poem the quality of mercy by class 7 english CBSE

What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are the major means of transport Explain each class 12 social science CBSE


