
If $y = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right);{x^2} \le 1$ then find $\dfrac{{dy}}{{dx}}$ .
Answer
564.3k+ views
Hint: In mathematics evaluating an inverse trigonometric function is same as asking what angle did, we plug into the trigonometric function to get ‘x’. The derivation of the given inverse trigonometric function is very difficult as the argument itself is very complicated. So, in order to find the derivative, we need to simplify the argument.
Complete Step by Step Solution
Given: $y = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right),{x^2} < 1$
First of all, since the argument of the inverse trigonometric function is very complex, we try to convert it into simple form preferably in a trigonometric form.
Let us put the value of ${x^2} = \cos 2\theta $
Therefore, $\sqrt {1 + {x^2}} = \sqrt {1 + \cos 2\theta } $
We know that, $\sqrt {1 + \cos 2\theta } = \sqrt {2{{\cos }^2}\theta } $
$ = \sqrt 2 \cos \theta $
Similarly, $\sqrt {1 - {x^2}} = \sqrt {2{{\sin }^2}\theta } = \sqrt 2 \sin \theta $
Thus, putting the value of $\sqrt {1 + {x^2}} $ as $\sqrt 2 \cos \theta $ and $\sqrt {1 - {x^2}} $ as $\sqrt 2 \sin \theta $ , we get
$y = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 \cos \theta + \sqrt 2 \sin \theta }}{{\sqrt 2 \cos \theta - \sqrt 2 \sin \theta }}} \right)$
This gives,
\[y = {\tan ^{ - 1}}\left( {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right)\]
Solving $\left( {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right)$separately where we divide in both numerator and denominator, it gives –
$\left( {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right) = \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}$
Again,
$\left( {\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}} \right) = \dfrac{{\tan \dfrac{\pi }{4} + \tan \theta }}{{\tan \dfrac{\pi }{4} - \tan \theta }} = \tan \left( {\dfrac{\pi }{4} + \theta } \right)$
This gives the equation to be –
$y = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \theta } \right)} \right)$
The inverse trigonometric and the trigonometric function cancel out –
$\Rightarrow y = \dfrac{\pi }{4} + \theta $
Substituting the value of $\theta = \dfrac{{{{\cos }^{ - 1}}{x^2}}}{2}$ [ as $\cos 2\theta = {x^2}$]
We get –
$\Rightarrow y = \dfrac{\pi }{4} + \dfrac{{{{\cos }^{ - 1}}{x^2}}}{2}$
Differentiating both sided with respect to x, we get –
$\Rightarrow \dfrac{{dy}}{{dx}} = 0 + \left( {\dfrac{{ - 1}}{{{{\sqrt {1 - \left( {{x^2}} \right)} }^2}}} \times 2x \times \dfrac{1}{2}} \right)$ [ since $\dfrac{d}{{dx}}{\cos ^{ - 1}}x = \dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}$ ]
Therefore,
$\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - x}}{{\sqrt {1 - {x^4}} }}$
So, the differentiation of $y = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right)$ gives $\dfrac{{ - x}}{{\sqrt {1 - {x^4}} }}$
Note:
The student should be able to use methods of substitutions to reduce calculation. We must remember the basic trigonometric formulas as they are very useful in reducing the complex inverse trigonometric functions into simple expressions.
Complete Step by Step Solution
Given: $y = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right),{x^2} < 1$
First of all, since the argument of the inverse trigonometric function is very complex, we try to convert it into simple form preferably in a trigonometric form.
Let us put the value of ${x^2} = \cos 2\theta $
Therefore, $\sqrt {1 + {x^2}} = \sqrt {1 + \cos 2\theta } $
We know that, $\sqrt {1 + \cos 2\theta } = \sqrt {2{{\cos }^2}\theta } $
$ = \sqrt 2 \cos \theta $
Similarly, $\sqrt {1 - {x^2}} = \sqrt {2{{\sin }^2}\theta } = \sqrt 2 \sin \theta $
Thus, putting the value of $\sqrt {1 + {x^2}} $ as $\sqrt 2 \cos \theta $ and $\sqrt {1 - {x^2}} $ as $\sqrt 2 \sin \theta $ , we get
$y = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 \cos \theta + \sqrt 2 \sin \theta }}{{\sqrt 2 \cos \theta - \sqrt 2 \sin \theta }}} \right)$
This gives,
\[y = {\tan ^{ - 1}}\left( {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right)\]
Solving $\left( {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right)$separately where we divide in both numerator and denominator, it gives –
$\left( {\dfrac{{\cos \theta + \sin \theta }}{{\cos \theta - \sin \theta }}} \right) = \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}$
Again,
$\left( {\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}} \right) = \dfrac{{\tan \dfrac{\pi }{4} + \tan \theta }}{{\tan \dfrac{\pi }{4} - \tan \theta }} = \tan \left( {\dfrac{\pi }{4} + \theta } \right)$
This gives the equation to be –
$y = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \theta } \right)} \right)$
The inverse trigonometric and the trigonometric function cancel out –
$\Rightarrow y = \dfrac{\pi }{4} + \theta $
Substituting the value of $\theta = \dfrac{{{{\cos }^{ - 1}}{x^2}}}{2}$ [ as $\cos 2\theta = {x^2}$]
We get –
$\Rightarrow y = \dfrac{\pi }{4} + \dfrac{{{{\cos }^{ - 1}}{x^2}}}{2}$
Differentiating both sided with respect to x, we get –
$\Rightarrow \dfrac{{dy}}{{dx}} = 0 + \left( {\dfrac{{ - 1}}{{{{\sqrt {1 - \left( {{x^2}} \right)} }^2}}} \times 2x \times \dfrac{1}{2}} \right)$ [ since $\dfrac{d}{{dx}}{\cos ^{ - 1}}x = \dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}$ ]
Therefore,
$\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - x}}{{\sqrt {1 - {x^4}} }}$
So, the differentiation of $y = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}} - \sqrt {1 - {x^2}} }}} \right)$ gives $\dfrac{{ - x}}{{\sqrt {1 - {x^4}} }}$
Note:
The student should be able to use methods of substitutions to reduce calculation. We must remember the basic trigonometric formulas as they are very useful in reducing the complex inverse trigonometric functions into simple expressions.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

