
If \[y = {\tan ^{ - 1}}\dfrac{1}{{{x^2} + x + 1}} + {\tan ^{ - 1}}\dfrac{1}{{{x^2} + 3x + 3}} + {\tan ^{ - 1}}\dfrac{1}{{{x^2} + 5x + 7}} + \] ………. to \[n\] terms, then
A) \[\dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + {{\left( {x + n} \right)}^2}}} - \dfrac{1}{{1 + {x^2}}}\]
B) \[\dfrac{{dy}}{{dx}} = \dfrac{1}{{{{\left( {x + n} \right)}^2}}} - \dfrac{1}{{1 + {x^2}}}\]
C) \[\dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + {{\left( {x + n} \right)}^2}}} + \dfrac{1}{{1 + {x^2}}}\]
D) None of these
Answer
567.6k+ views
Hint:
Here we need to find the differentiation of a given trigonometric equation. For that, we will break the terms inside the bracket. Then we will use the basic inverse trigonometric formulas to simplify the terms further. We will then differentiate the simplified trigonometric equation with respect to the given variable. After differentiating each term, we will get the final answer.
Complete step by step solution:
The given trigonometric equation is
\[y = {\tan ^{ - 1}}\dfrac{1}{{{x^2} + x + 1}} + {\tan ^{ - 1}}\dfrac{1}{{{x^2} + 3x + 3}} + {\tan ^{ - 1}}\dfrac{1}{{{x^2} + 5x + 7}} + \] ………. to \[n\]
Now, we will break the term of numerator of all the terms. , the quadratic equations are used in the denominator. So, we will factorize these quadratic equations used in the denominator of all the terms.
\[ \Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + x\left( {x + 1} \right)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + {x^2} + 2x + x + 2}}} \right) + .....{\tan ^{ - 1}}\left( {\dfrac{1}{{1 + \left( {x + n - 1} \right)\left( {x + n} \right)}}} \right)\]
On further simplification, we get
\[ \Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + x\left( {x + 1} \right)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + \left( {x + 1} \right)\left( {x + 2} \right)}}} \right) + .....{\tan ^{ - 1}}\left( {\dfrac{1}{{1 + \left( {x + n - 1} \right)\left( {x + n} \right)}}} \right)\]
Now, we will break the terms inside the bracket, we get
\[ \Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{{\left( {x + 1} \right) - x}}{{1 + x\left( {x + 1} \right)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{\left( {x + 2} \right) - \left( {x + 1} \right)}}{{1 + \left( {x + 1} \right)\left( {x + 2} \right)}}} \right) + .... + {\tan ^{ - 1}}\left( {\dfrac{{\left( {x + n} \right) - \left( {x + n - 1} \right)}}{{1 + \left( {x + n - 1} \right)\left( {x + n} \right)}}} \right)\]
We know the inverse trigonometric formula;
\[{\tan ^{ - 1}}\left( {\dfrac{{A - B}}{{1 + A.B}}} \right) = {\tan ^{ - 1}}A - {\tan ^{ - 1}}B\]
Using this formula for each term, we get
\[ \Rightarrow y = {\tan ^{ - 1}}\left( {x + 1} \right) - {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {x + 2} \right) - {\tan ^{ - 1}}\left( {x + 1} \right) + .... + {\tan ^{ - 1}}\left( {x + n} \right) - {\tan ^{ - 1}}\left( {x + n - 1} \right)\]
On subtracting the same terms, we get
\[ \Rightarrow y = {\tan ^{ - 1}}\left( {x + n} \right) - {\tan ^{ - 1}}x\]
Now, we will differentiate both sides of equation with respect to \[x\]
\[\begin{array}{l} \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\left( {{{\tan }^{ - 1}}\left( {x + n} \right) - {{\tan }^{ - 1}}x} \right)}}{{dx}}\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d{{\tan }^{ - 1}}\left( {x + n} \right)}}{{dx}} - \dfrac{{d{{\tan }^{ - 1}}x}}{{dx}}\end{array}\]
On differentiating each term, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + {{\left( {x + n} \right)}^2}}} - \dfrac{1}{{1 + {x^2}}}\]
Hence, the correct option is option A.
Note:
Here we have used the basic trigonometric formulas to simplify the trigonometric equation. The inverse trigonometric functions are also called as the anti trigonometric functions or sometimes they are also called as arcus functions or cyclometric functions. The inverse trigonometric functions of cosine, sine, cosecant , tangent, secant and cotangent are used to find the angle of a triangle. It is used in many fields, for example - engineering, geometry, physics, etc. Inverse trigonometric formulas make the solution easy and short.
Here we need to find the differentiation of a given trigonometric equation. For that, we will break the terms inside the bracket. Then we will use the basic inverse trigonometric formulas to simplify the terms further. We will then differentiate the simplified trigonometric equation with respect to the given variable. After differentiating each term, we will get the final answer.
Complete step by step solution:
The given trigonometric equation is
\[y = {\tan ^{ - 1}}\dfrac{1}{{{x^2} + x + 1}} + {\tan ^{ - 1}}\dfrac{1}{{{x^2} + 3x + 3}} + {\tan ^{ - 1}}\dfrac{1}{{{x^2} + 5x + 7}} + \] ………. to \[n\]
Now, we will break the term of numerator of all the terms. , the quadratic equations are used in the denominator. So, we will factorize these quadratic equations used in the denominator of all the terms.
\[ \Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + x\left( {x + 1} \right)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + {x^2} + 2x + x + 2}}} \right) + .....{\tan ^{ - 1}}\left( {\dfrac{1}{{1 + \left( {x + n - 1} \right)\left( {x + n} \right)}}} \right)\]
On further simplification, we get
\[ \Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + x\left( {x + 1} \right)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + \left( {x + 1} \right)\left( {x + 2} \right)}}} \right) + .....{\tan ^{ - 1}}\left( {\dfrac{1}{{1 + \left( {x + n - 1} \right)\left( {x + n} \right)}}} \right)\]
Now, we will break the terms inside the bracket, we get
\[ \Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{{\left( {x + 1} \right) - x}}{{1 + x\left( {x + 1} \right)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{\left( {x + 2} \right) - \left( {x + 1} \right)}}{{1 + \left( {x + 1} \right)\left( {x + 2} \right)}}} \right) + .... + {\tan ^{ - 1}}\left( {\dfrac{{\left( {x + n} \right) - \left( {x + n - 1} \right)}}{{1 + \left( {x + n - 1} \right)\left( {x + n} \right)}}} \right)\]
We know the inverse trigonometric formula;
\[{\tan ^{ - 1}}\left( {\dfrac{{A - B}}{{1 + A.B}}} \right) = {\tan ^{ - 1}}A - {\tan ^{ - 1}}B\]
Using this formula for each term, we get
\[ \Rightarrow y = {\tan ^{ - 1}}\left( {x + 1} \right) - {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {x + 2} \right) - {\tan ^{ - 1}}\left( {x + 1} \right) + .... + {\tan ^{ - 1}}\left( {x + n} \right) - {\tan ^{ - 1}}\left( {x + n - 1} \right)\]
On subtracting the same terms, we get
\[ \Rightarrow y = {\tan ^{ - 1}}\left( {x + n} \right) - {\tan ^{ - 1}}x\]
Now, we will differentiate both sides of equation with respect to \[x\]
\[\begin{array}{l} \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\left( {{{\tan }^{ - 1}}\left( {x + n} \right) - {{\tan }^{ - 1}}x} \right)}}{{dx}}\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d{{\tan }^{ - 1}}\left( {x + n} \right)}}{{dx}} - \dfrac{{d{{\tan }^{ - 1}}x}}{{dx}}\end{array}\]
On differentiating each term, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + {{\left( {x + n} \right)}^2}}} - \dfrac{1}{{1 + {x^2}}}\]
Hence, the correct option is option A.
Note:
Here we have used the basic trigonometric formulas to simplify the trigonometric equation. The inverse trigonometric functions are also called as the anti trigonometric functions or sometimes they are also called as arcus functions or cyclometric functions. The inverse trigonometric functions of cosine, sine, cosecant , tangent, secant and cotangent are used to find the angle of a triangle. It is used in many fields, for example - engineering, geometry, physics, etc. Inverse trigonometric formulas make the solution easy and short.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Why cannot DNA pass through cell membranes class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

In a human foetus the limbs and digits develop after class 12 biology CBSE

AABbCc genotype forms how many types of gametes a 4 class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

