
If $y = {\sin ^{ - 1}}\left[ {\dfrac{{\left( {\sin \alpha \sin x} \right)}}{{\left( {1 - \cos \alpha \sin x} \right)}}} \right]$ then\[y'(0)\] is equal to
1.\[1\]
2. \[\tan \alpha \]
3. \[\left( {\dfrac{1}{2}} \right)\tan \alpha \]
4. \[\sin \alpha \]
Answer
436.2k+ views
Hint: In order to find the value of \[y'(0)\] find the first order derivative by differentiating the given function with respect to x. The function can be solved by using the Chain rule, which is as solving the inner function then solving the outer function, which is numerically written as:
$\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dc}} \times \dfrac{{dc}}{{dv}} \times \dfrac{{dv}}{{dx}}$, where u, c, v can be the functions inside the main function.
Formula used:
\[\dfrac{d}{{dx}}\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right]}^2}}}\]
Complete answer:
We are given with a function $y = {\sin ^{ - 1}}\left[ {\dfrac{{\left( {\sin \alpha \sin x} \right)}}{{\left( {1 - \cos \alpha \sin x} \right)}}} \right]$.
Since, the value inside the braces is in the form of division so, we can use the Quotient rule of derivatives when needed, which is:
\[\dfrac{d}{{dx}}\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right]}^2}}}\]
Starting with differentiation.
Considering $u = \dfrac{{\left( {\sin \alpha \sin x} \right)}}{{\left( {1 - \cos \alpha \sin x} \right)}}$
And, so, the value becomes:
$y = {\sin ^{ - 1}}u$
Differentiating u with respect to x using the quotient rule, we get:
Comparing:
\[
f\left( x \right) = \left( {\sin \alpha \sin x} \right) \\
g\left( x \right) = \left( {1 - \cos \alpha \sin x} \right) \\
\]
And, substituting the values:
$\dfrac{{du}}{{dx}} = \dfrac{{\left( {1 - \cos \alpha \sin x} \right)\dfrac{{d\left( {\sin \alpha \sin x} \right)}}{{dx}} - \left( {\sin \alpha \sin x} \right)\dfrac{{d\left( {1 - \cos \alpha \sin x} \right)}}{{dx}}}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \left( {1 - \cos \alpha \sin x} \right)\dfrac{{d\left( {\sin x} \right)}}{{dx}} - \left( {\sin \alpha \sin x} \right)\left( {\dfrac{{d1}}{{dx}} - \cos \alpha \dfrac{{d\left( {\sin x} \right)}}{{dx}}} \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
Since, we know that $\dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x$
so, we get:
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \left( {1 - \cos \alpha \sin x} \right)\cos x - \left( {\sin \alpha \sin x} \right)\left( { - \cos x\cos \alpha } \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \cos x\left( {1 - \cos \alpha \sin x} \right) + \left( {\sin \alpha \sin x\cos x\cos \alpha } \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
Taking $\sin \alpha \cos x$ common, we get:
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \cos x\left( {1 - \cos \alpha \sin x + \sin x\cos \alpha } \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
Now, differentiating both sides of the function y, with respect to \[x\] we get:
Since, we have $y = {\sin ^{ - 1}}u$, So, we can write:
$\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}}$
As, we know that $\dfrac{{d\left( {{{\sin }^{ - 1}}x} \right)}}{{dx}} = \dfrac{1}{{\sqrt {1 - {x^2}} }}$: So, we get:
\[ \Rightarrow y' = \dfrac{1}{{\sqrt {1 - {u^2}} }}\dfrac{{du}}{{dx}}\]
Substituting the value of u and $\dfrac{{du}}{{dx}}$ we get:
\[ \Rightarrow y' = \dfrac{1}{{\sqrt {1 - \dfrac{{{{\left( {\sin \alpha \sin x} \right)}^2}}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}} }} \times \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}\]
Solving it further, we get:
\[ \Rightarrow y' = \dfrac{1}{{\sqrt {\dfrac{{{{\left( {1 - \cos \alpha \sin x} \right)}^2} - {{\left( {\sin \alpha \sin x} \right)}^2}}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}} }} \times \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}\]
\[ \Rightarrow y' = \dfrac{{\left( {1 - \cos \alpha \sin x} \right)}}{{\sqrt {{{\left( {1 - \cos \alpha \sin x} \right)}^2} - {{\left( {\sin \alpha \sin x} \right)}^2}} }} \times \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}\]
Cancelling \[\left( {1 - \cos \alpha \sin x} \right)\] from the numerator and denominator, we get:
\[ \Rightarrow y' = \dfrac{{\sin \alpha \cos x}}{{\left( {1 - \cos \alpha \sin x} \right)\sqrt {{{\left( {1 - \cos \alpha \sin x} \right)}^2} - {{\left( {\sin \alpha \sin x} \right)}^2}} }}\]
As, we needed to find the value of y=0:
So, now putting \[x = 0\] we get:
\[ \Rightarrow y' = \dfrac{{\sin \alpha \cos 0}}{{\left( {1 - \cos \alpha \sin 0} \right)\sqrt {{{\left( {1 - \cos \alpha \sin 0} \right)}^2} - {{\left( {\sin \alpha \sin 0} \right)}^2}} }}\]
Since, we know that \[\cos 0 = 1{\text{ and sin0 = 0}}\] so, we get:
\[ \Rightarrow y' = \dfrac{{\sin \alpha \times 1}}{{\left( {1 - 0} \right)\sqrt {{{\left( {1 - 0} \right)}^2} - {0^2}} }}\]
\[ \Rightarrow y' = \dfrac{{\sin \alpha \times 1}}{{1\sqrt {{1^2}} }}\]
\[ \Rightarrow y' = \sin \alpha \]
That gives the value \[y'(0) = \sin \alpha \].
Hence, Option (4) is the correct Answer.
Note:
If needed we can solve the obtained first order derivative more to its simplest form using the formula \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], but since, we can see there would be no change in the answer after solving it further as we can substitute the value at this stage only.
$\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dc}} \times \dfrac{{dc}}{{dv}} \times \dfrac{{dv}}{{dx}}$, where u, c, v can be the functions inside the main function.
Formula used:
\[\dfrac{d}{{dx}}\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right]}^2}}}\]
Complete answer:
We are given with a function $y = {\sin ^{ - 1}}\left[ {\dfrac{{\left( {\sin \alpha \sin x} \right)}}{{\left( {1 - \cos \alpha \sin x} \right)}}} \right]$.
Since, the value inside the braces is in the form of division so, we can use the Quotient rule of derivatives when needed, which is:
\[\dfrac{d}{{dx}}\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right]}^2}}}\]
Starting with differentiation.
Considering $u = \dfrac{{\left( {\sin \alpha \sin x} \right)}}{{\left( {1 - \cos \alpha \sin x} \right)}}$
And, so, the value becomes:
$y = {\sin ^{ - 1}}u$
Differentiating u with respect to x using the quotient rule, we get:
Comparing:
\[
f\left( x \right) = \left( {\sin \alpha \sin x} \right) \\
g\left( x \right) = \left( {1 - \cos \alpha \sin x} \right) \\
\]
And, substituting the values:
$\dfrac{{du}}{{dx}} = \dfrac{{\left( {1 - \cos \alpha \sin x} \right)\dfrac{{d\left( {\sin \alpha \sin x} \right)}}{{dx}} - \left( {\sin \alpha \sin x} \right)\dfrac{{d\left( {1 - \cos \alpha \sin x} \right)}}{{dx}}}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \left( {1 - \cos \alpha \sin x} \right)\dfrac{{d\left( {\sin x} \right)}}{{dx}} - \left( {\sin \alpha \sin x} \right)\left( {\dfrac{{d1}}{{dx}} - \cos \alpha \dfrac{{d\left( {\sin x} \right)}}{{dx}}} \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
Since, we know that $\dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x$
so, we get:
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \left( {1 - \cos \alpha \sin x} \right)\cos x - \left( {\sin \alpha \sin x} \right)\left( { - \cos x\cos \alpha } \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \cos x\left( {1 - \cos \alpha \sin x} \right) + \left( {\sin \alpha \sin x\cos x\cos \alpha } \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
Taking $\sin \alpha \cos x$ common, we get:
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \cos x\left( {1 - \cos \alpha \sin x + \sin x\cos \alpha } \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
Now, differentiating both sides of the function y, with respect to \[x\] we get:
Since, we have $y = {\sin ^{ - 1}}u$, So, we can write:
$\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}}$
As, we know that $\dfrac{{d\left( {{{\sin }^{ - 1}}x} \right)}}{{dx}} = \dfrac{1}{{\sqrt {1 - {x^2}} }}$: So, we get:
\[ \Rightarrow y' = \dfrac{1}{{\sqrt {1 - {u^2}} }}\dfrac{{du}}{{dx}}\]
Substituting the value of u and $\dfrac{{du}}{{dx}}$ we get:
\[ \Rightarrow y' = \dfrac{1}{{\sqrt {1 - \dfrac{{{{\left( {\sin \alpha \sin x} \right)}^2}}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}} }} \times \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}\]
Solving it further, we get:
\[ \Rightarrow y' = \dfrac{1}{{\sqrt {\dfrac{{{{\left( {1 - \cos \alpha \sin x} \right)}^2} - {{\left( {\sin \alpha \sin x} \right)}^2}}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}} }} \times \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}\]
\[ \Rightarrow y' = \dfrac{{\left( {1 - \cos \alpha \sin x} \right)}}{{\sqrt {{{\left( {1 - \cos \alpha \sin x} \right)}^2} - {{\left( {\sin \alpha \sin x} \right)}^2}} }} \times \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}\]
Cancelling \[\left( {1 - \cos \alpha \sin x} \right)\] from the numerator and denominator, we get:
\[ \Rightarrow y' = \dfrac{{\sin \alpha \cos x}}{{\left( {1 - \cos \alpha \sin x} \right)\sqrt {{{\left( {1 - \cos \alpha \sin x} \right)}^2} - {{\left( {\sin \alpha \sin x} \right)}^2}} }}\]
As, we needed to find the value of y=0:
So, now putting \[x = 0\] we get:
\[ \Rightarrow y' = \dfrac{{\sin \alpha \cos 0}}{{\left( {1 - \cos \alpha \sin 0} \right)\sqrt {{{\left( {1 - \cos \alpha \sin 0} \right)}^2} - {{\left( {\sin \alpha \sin 0} \right)}^2}} }}\]
Since, we know that \[\cos 0 = 1{\text{ and sin0 = 0}}\] so, we get:
\[ \Rightarrow y' = \dfrac{{\sin \alpha \times 1}}{{\left( {1 - 0} \right)\sqrt {{{\left( {1 - 0} \right)}^2} - {0^2}} }}\]
\[ \Rightarrow y' = \dfrac{{\sin \alpha \times 1}}{{1\sqrt {{1^2}} }}\]
\[ \Rightarrow y' = \sin \alpha \]
That gives the value \[y'(0) = \sin \alpha \].
Hence, Option (4) is the correct Answer.
Note:
If needed we can solve the obtained first order derivative more to its simplest form using the formula \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], but since, we can see there would be no change in the answer after solving it further as we can substitute the value at this stage only.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
