
If $y = {\sin ^{ - 1}}\left[ {\dfrac{{\left( {\sin \alpha \sin x} \right)}}{{\left( {1 - \cos \alpha \sin x} \right)}}} \right]$ then\[y'(0)\] is equal to
1.\[1\]
2. \[\tan \alpha \]
3. \[\left( {\dfrac{1}{2}} \right)\tan \alpha \]
4. \[\sin \alpha \]
Answer
484.5k+ views
Hint: In order to find the value of \[y'(0)\] find the first order derivative by differentiating the given function with respect to x. The function can be solved by using the Chain rule, which is as solving the inner function then solving the outer function, which is numerically written as:
$\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dc}} \times \dfrac{{dc}}{{dv}} \times \dfrac{{dv}}{{dx}}$, where u, c, v can be the functions inside the main function.
Formula used:
\[\dfrac{d}{{dx}}\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right]}^2}}}\]
Complete answer:
We are given with a function $y = {\sin ^{ - 1}}\left[ {\dfrac{{\left( {\sin \alpha \sin x} \right)}}{{\left( {1 - \cos \alpha \sin x} \right)}}} \right]$.
Since, the value inside the braces is in the form of division so, we can use the Quotient rule of derivatives when needed, which is:
\[\dfrac{d}{{dx}}\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right]}^2}}}\]
Starting with differentiation.
Considering $u = \dfrac{{\left( {\sin \alpha \sin x} \right)}}{{\left( {1 - \cos \alpha \sin x} \right)}}$
And, so, the value becomes:
$y = {\sin ^{ - 1}}u$
Differentiating u with respect to x using the quotient rule, we get:
Comparing:
\[
f\left( x \right) = \left( {\sin \alpha \sin x} \right) \\
g\left( x \right) = \left( {1 - \cos \alpha \sin x} \right) \\
\]
And, substituting the values:
$\dfrac{{du}}{{dx}} = \dfrac{{\left( {1 - \cos \alpha \sin x} \right)\dfrac{{d\left( {\sin \alpha \sin x} \right)}}{{dx}} - \left( {\sin \alpha \sin x} \right)\dfrac{{d\left( {1 - \cos \alpha \sin x} \right)}}{{dx}}}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \left( {1 - \cos \alpha \sin x} \right)\dfrac{{d\left( {\sin x} \right)}}{{dx}} - \left( {\sin \alpha \sin x} \right)\left( {\dfrac{{d1}}{{dx}} - \cos \alpha \dfrac{{d\left( {\sin x} \right)}}{{dx}}} \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
Since, we know that $\dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x$
so, we get:
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \left( {1 - \cos \alpha \sin x} \right)\cos x - \left( {\sin \alpha \sin x} \right)\left( { - \cos x\cos \alpha } \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \cos x\left( {1 - \cos \alpha \sin x} \right) + \left( {\sin \alpha \sin x\cos x\cos \alpha } \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
Taking $\sin \alpha \cos x$ common, we get:
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \cos x\left( {1 - \cos \alpha \sin x + \sin x\cos \alpha } \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
Now, differentiating both sides of the function y, with respect to \[x\] we get:
Since, we have $y = {\sin ^{ - 1}}u$, So, we can write:
$\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}}$
As, we know that $\dfrac{{d\left( {{{\sin }^{ - 1}}x} \right)}}{{dx}} = \dfrac{1}{{\sqrt {1 - {x^2}} }}$: So, we get:
\[ \Rightarrow y' = \dfrac{1}{{\sqrt {1 - {u^2}} }}\dfrac{{du}}{{dx}}\]
Substituting the value of u and $\dfrac{{du}}{{dx}}$ we get:
\[ \Rightarrow y' = \dfrac{1}{{\sqrt {1 - \dfrac{{{{\left( {\sin \alpha \sin x} \right)}^2}}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}} }} \times \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}\]
Solving it further, we get:
\[ \Rightarrow y' = \dfrac{1}{{\sqrt {\dfrac{{{{\left( {1 - \cos \alpha \sin x} \right)}^2} - {{\left( {\sin \alpha \sin x} \right)}^2}}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}} }} \times \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}\]
\[ \Rightarrow y' = \dfrac{{\left( {1 - \cos \alpha \sin x} \right)}}{{\sqrt {{{\left( {1 - \cos \alpha \sin x} \right)}^2} - {{\left( {\sin \alpha \sin x} \right)}^2}} }} \times \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}\]
Cancelling \[\left( {1 - \cos \alpha \sin x} \right)\] from the numerator and denominator, we get:
\[ \Rightarrow y' = \dfrac{{\sin \alpha \cos x}}{{\left( {1 - \cos \alpha \sin x} \right)\sqrt {{{\left( {1 - \cos \alpha \sin x} \right)}^2} - {{\left( {\sin \alpha \sin x} \right)}^2}} }}\]
As, we needed to find the value of y=0:
So, now putting \[x = 0\] we get:
\[ \Rightarrow y' = \dfrac{{\sin \alpha \cos 0}}{{\left( {1 - \cos \alpha \sin 0} \right)\sqrt {{{\left( {1 - \cos \alpha \sin 0} \right)}^2} - {{\left( {\sin \alpha \sin 0} \right)}^2}} }}\]
Since, we know that \[\cos 0 = 1{\text{ and sin0 = 0}}\] so, we get:
\[ \Rightarrow y' = \dfrac{{\sin \alpha \times 1}}{{\left( {1 - 0} \right)\sqrt {{{\left( {1 - 0} \right)}^2} - {0^2}} }}\]
\[ \Rightarrow y' = \dfrac{{\sin \alpha \times 1}}{{1\sqrt {{1^2}} }}\]
\[ \Rightarrow y' = \sin \alpha \]
That gives the value \[y'(0) = \sin \alpha \].
Hence, Option (4) is the correct Answer.
Note:
If needed we can solve the obtained first order derivative more to its simplest form using the formula \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], but since, we can see there would be no change in the answer after solving it further as we can substitute the value at this stage only.
$\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dc}} \times \dfrac{{dc}}{{dv}} \times \dfrac{{dv}}{{dx}}$, where u, c, v can be the functions inside the main function.
Formula used:
\[\dfrac{d}{{dx}}\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right]}^2}}}\]
Complete answer:
We are given with a function $y = {\sin ^{ - 1}}\left[ {\dfrac{{\left( {\sin \alpha \sin x} \right)}}{{\left( {1 - \cos \alpha \sin x} \right)}}} \right]$.
Since, the value inside the braces is in the form of division so, we can use the Quotient rule of derivatives when needed, which is:
\[\dfrac{d}{{dx}}\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right]}^2}}}\]
Starting with differentiation.
Considering $u = \dfrac{{\left( {\sin \alpha \sin x} \right)}}{{\left( {1 - \cos \alpha \sin x} \right)}}$
And, so, the value becomes:
$y = {\sin ^{ - 1}}u$
Differentiating u with respect to x using the quotient rule, we get:
Comparing:
\[
f\left( x \right) = \left( {\sin \alpha \sin x} \right) \\
g\left( x \right) = \left( {1 - \cos \alpha \sin x} \right) \\
\]
And, substituting the values:
$\dfrac{{du}}{{dx}} = \dfrac{{\left( {1 - \cos \alpha \sin x} \right)\dfrac{{d\left( {\sin \alpha \sin x} \right)}}{{dx}} - \left( {\sin \alpha \sin x} \right)\dfrac{{d\left( {1 - \cos \alpha \sin x} \right)}}{{dx}}}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \left( {1 - \cos \alpha \sin x} \right)\dfrac{{d\left( {\sin x} \right)}}{{dx}} - \left( {\sin \alpha \sin x} \right)\left( {\dfrac{{d1}}{{dx}} - \cos \alpha \dfrac{{d\left( {\sin x} \right)}}{{dx}}} \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
Since, we know that $\dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x$
so, we get:
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \left( {1 - \cos \alpha \sin x} \right)\cos x - \left( {\sin \alpha \sin x} \right)\left( { - \cos x\cos \alpha } \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \cos x\left( {1 - \cos \alpha \sin x} \right) + \left( {\sin \alpha \sin x\cos x\cos \alpha } \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
Taking $\sin \alpha \cos x$ common, we get:
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \cos x\left( {1 - \cos \alpha \sin x + \sin x\cos \alpha } \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}$
Now, differentiating both sides of the function y, with respect to \[x\] we get:
Since, we have $y = {\sin ^{ - 1}}u$, So, we can write:
$\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}}$
As, we know that $\dfrac{{d\left( {{{\sin }^{ - 1}}x} \right)}}{{dx}} = \dfrac{1}{{\sqrt {1 - {x^2}} }}$: So, we get:
\[ \Rightarrow y' = \dfrac{1}{{\sqrt {1 - {u^2}} }}\dfrac{{du}}{{dx}}\]
Substituting the value of u and $\dfrac{{du}}{{dx}}$ we get:
\[ \Rightarrow y' = \dfrac{1}{{\sqrt {1 - \dfrac{{{{\left( {\sin \alpha \sin x} \right)}^2}}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}} }} \times \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}\]
Solving it further, we get:
\[ \Rightarrow y' = \dfrac{1}{{\sqrt {\dfrac{{{{\left( {1 - \cos \alpha \sin x} \right)}^2} - {{\left( {\sin \alpha \sin x} \right)}^2}}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}} }} \times \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}\]
\[ \Rightarrow y' = \dfrac{{\left( {1 - \cos \alpha \sin x} \right)}}{{\sqrt {{{\left( {1 - \cos \alpha \sin x} \right)}^2} - {{\left( {\sin \alpha \sin x} \right)}^2}} }} \times \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}\]
Cancelling \[\left( {1 - \cos \alpha \sin x} \right)\] from the numerator and denominator, we get:
\[ \Rightarrow y' = \dfrac{{\sin \alpha \cos x}}{{\left( {1 - \cos \alpha \sin x} \right)\sqrt {{{\left( {1 - \cos \alpha \sin x} \right)}^2} - {{\left( {\sin \alpha \sin x} \right)}^2}} }}\]
As, we needed to find the value of y=0:
So, now putting \[x = 0\] we get:
\[ \Rightarrow y' = \dfrac{{\sin \alpha \cos 0}}{{\left( {1 - \cos \alpha \sin 0} \right)\sqrt {{{\left( {1 - \cos \alpha \sin 0} \right)}^2} - {{\left( {\sin \alpha \sin 0} \right)}^2}} }}\]
Since, we know that \[\cos 0 = 1{\text{ and sin0 = 0}}\] so, we get:
\[ \Rightarrow y' = \dfrac{{\sin \alpha \times 1}}{{\left( {1 - 0} \right)\sqrt {{{\left( {1 - 0} \right)}^2} - {0^2}} }}\]
\[ \Rightarrow y' = \dfrac{{\sin \alpha \times 1}}{{1\sqrt {{1^2}} }}\]
\[ \Rightarrow y' = \sin \alpha \]
That gives the value \[y'(0) = \sin \alpha \].
Hence, Option (4) is the correct Answer.
Note:
If needed we can solve the obtained first order derivative more to its simplest form using the formula \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], but since, we can see there would be no change in the answer after solving it further as we can substitute the value at this stage only.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

