
If ${\text{y = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right)$, then $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$at x = 1 is equal to?
$
{\text{A}}{\text{. }}\dfrac{1}{2} \\
{\text{B}}{\text{. 1}} \\
{\text{C}}{\text{. }}\sqrt 2 \\
{\text{D}}{\text{. }}\dfrac{1}{{\sqrt 2 }} \\
$
Answer
510.9k+ views
Hint: In order to find the value of $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ at x = 1, we differentiate the given function ‘y’ with respect to x and then substitute the value x = 1 in the obtained to find the answer. The first order differentials of trigonometric and inverse trigonometric functions are used while simplification.
Complete step-by-step answer:
Given Data,
${\text{y = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right)$
Let us differentiate the given function ‘y’ with respect to ‘x’,
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = }}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right)} \right)$
We know the derivative of sec x is tan x and the derivative of ${\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}$ is $\dfrac{1}{{1 + {{\text{x}}^2}}}$
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right){\text{tan}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right) \times \dfrac{1}{{1 + {{\text{x}}^2}}}$
We know that the inverse of a function itself gives us the value of the variable in the function, i.e. $f\left( {{{\text{f}}^{ - 1}}\left( {\text{x}} \right)} \right) = {\text{x}}$
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right) \times \dfrac{{\text{x}}}{{1 + {{\text{x}}^2}}}$
Now let us compute $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ at x = 1,
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{{\text{|}}_{{\text{x = 1}}}}{\text{ = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right) \times \dfrac{{\text{x}}}{{1 + {{\text{x}}^2}}}$
We know ${\text{ta}}{{\text{n}}^{ - 1}}\left( 1 \right) = 45^\circ {\text{ and sec 45}}^\circ {\text{ = }}\sqrt 2 $
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{{\text{|}}_{{\text{x = 1}}}}{\text{ = sec}}\left( {45^\circ } \right) \times \dfrac{{\text{x}}}{{1 + {{\text{x}}^2}}}$
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{{\text{|}}_{{\text{x = 1}}}}{\text{ = }}\sqrt 2 \times \dfrac{1}{2}$
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{{\text{|}}_{{\text{x = 1}}}}{\text{ = }}\dfrac{1}{{\sqrt 2 }}$
Therefore if ${\text{y = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right)$, then $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ at x = 1 is equal to $\dfrac{1}{{\sqrt 2 }}$. So, Option D is the correct answer.
Note: In order to solve this type of questions the key is to know the concept of differentiation and the general formulae of few first order differentials of trigonometric and inverse trigonometric functions. The term $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ means we differentiate the function represented by ‘y’ with respect to the variable ‘x’. The value of a function at a variable value is the value of the function when the variable in it takes the given value. The formula of differentials of trigonometric functions have to be memorized to easily solve problems of this type.
Complete step-by-step answer:
Given Data,
${\text{y = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right)$
Let us differentiate the given function ‘y’ with respect to ‘x’,
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = }}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right)} \right)$
We know the derivative of sec x is tan x and the derivative of ${\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}$ is $\dfrac{1}{{1 + {{\text{x}}^2}}}$
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right){\text{tan}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right) \times \dfrac{1}{{1 + {{\text{x}}^2}}}$
We know that the inverse of a function itself gives us the value of the variable in the function, i.e. $f\left( {{{\text{f}}^{ - 1}}\left( {\text{x}} \right)} \right) = {\text{x}}$
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right) \times \dfrac{{\text{x}}}{{1 + {{\text{x}}^2}}}$
Now let us compute $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ at x = 1,
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{{\text{|}}_{{\text{x = 1}}}}{\text{ = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right) \times \dfrac{{\text{x}}}{{1 + {{\text{x}}^2}}}$
We know ${\text{ta}}{{\text{n}}^{ - 1}}\left( 1 \right) = 45^\circ {\text{ and sec 45}}^\circ {\text{ = }}\sqrt 2 $
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{{\text{|}}_{{\text{x = 1}}}}{\text{ = sec}}\left( {45^\circ } \right) \times \dfrac{{\text{x}}}{{1 + {{\text{x}}^2}}}$
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{{\text{|}}_{{\text{x = 1}}}}{\text{ = }}\sqrt 2 \times \dfrac{1}{2}$
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{{\text{|}}_{{\text{x = 1}}}}{\text{ = }}\dfrac{1}{{\sqrt 2 }}$
Therefore if ${\text{y = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right)$, then $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ at x = 1 is equal to $\dfrac{1}{{\sqrt 2 }}$. So, Option D is the correct answer.
Note: In order to solve this type of questions the key is to know the concept of differentiation and the general formulae of few first order differentials of trigonometric and inverse trigonometric functions. The term $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ means we differentiate the function represented by ‘y’ with respect to the variable ‘x’. The value of a function at a variable value is the value of the function when the variable in it takes the given value. The formula of differentials of trigonometric functions have to be memorized to easily solve problems of this type.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

An orchid growing as an epiphyte on a mango tree is class 12 biology CBSE
