
If ${\text{y = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right)$, then $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$at x = 1 is equal to?
$
{\text{A}}{\text{. }}\dfrac{1}{2} \\
{\text{B}}{\text{. 1}} \\
{\text{C}}{\text{. }}\sqrt 2 \\
{\text{D}}{\text{. }}\dfrac{1}{{\sqrt 2 }} \\
$
Answer
578.1k+ views
Hint: In order to find the value of $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ at x = 1, we differentiate the given function ‘y’ with respect to x and then substitute the value x = 1 in the obtained to find the answer. The first order differentials of trigonometric and inverse trigonometric functions are used while simplification.
Complete step-by-step answer:
Given Data,
${\text{y = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right)$
Let us differentiate the given function ‘y’ with respect to ‘x’,
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = }}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right)} \right)$
We know the derivative of sec x is tan x and the derivative of ${\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}$ is $\dfrac{1}{{1 + {{\text{x}}^2}}}$
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right){\text{tan}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right) \times \dfrac{1}{{1 + {{\text{x}}^2}}}$
We know that the inverse of a function itself gives us the value of the variable in the function, i.e. $f\left( {{{\text{f}}^{ - 1}}\left( {\text{x}} \right)} \right) = {\text{x}}$
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right) \times \dfrac{{\text{x}}}{{1 + {{\text{x}}^2}}}$
Now let us compute $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ at x = 1,
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{{\text{|}}_{{\text{x = 1}}}}{\text{ = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right) \times \dfrac{{\text{x}}}{{1 + {{\text{x}}^2}}}$
We know ${\text{ta}}{{\text{n}}^{ - 1}}\left( 1 \right) = 45^\circ {\text{ and sec 45}}^\circ {\text{ = }}\sqrt 2 $
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{{\text{|}}_{{\text{x = 1}}}}{\text{ = sec}}\left( {45^\circ } \right) \times \dfrac{{\text{x}}}{{1 + {{\text{x}}^2}}}$
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{{\text{|}}_{{\text{x = 1}}}}{\text{ = }}\sqrt 2 \times \dfrac{1}{2}$
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{{\text{|}}_{{\text{x = 1}}}}{\text{ = }}\dfrac{1}{{\sqrt 2 }}$
Therefore if ${\text{y = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right)$, then $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ at x = 1 is equal to $\dfrac{1}{{\sqrt 2 }}$. So, Option D is the correct answer.
Note: In order to solve this type of questions the key is to know the concept of differentiation and the general formulae of few first order differentials of trigonometric and inverse trigonometric functions. The term $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ means we differentiate the function represented by ‘y’ with respect to the variable ‘x’. The value of a function at a variable value is the value of the function when the variable in it takes the given value. The formula of differentials of trigonometric functions have to be memorized to easily solve problems of this type.
Complete step-by-step answer:
Given Data,
${\text{y = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right)$
Let us differentiate the given function ‘y’ with respect to ‘x’,
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = }}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right)} \right)$
We know the derivative of sec x is tan x and the derivative of ${\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}$ is $\dfrac{1}{{1 + {{\text{x}}^2}}}$
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right){\text{tan}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right) \times \dfrac{1}{{1 + {{\text{x}}^2}}}$
We know that the inverse of a function itself gives us the value of the variable in the function, i.e. $f\left( {{{\text{f}}^{ - 1}}\left( {\text{x}} \right)} \right) = {\text{x}}$
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{ = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right) \times \dfrac{{\text{x}}}{{1 + {{\text{x}}^2}}}$
Now let us compute $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ at x = 1,
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{{\text{|}}_{{\text{x = 1}}}}{\text{ = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right) \times \dfrac{{\text{x}}}{{1 + {{\text{x}}^2}}}$
We know ${\text{ta}}{{\text{n}}^{ - 1}}\left( 1 \right) = 45^\circ {\text{ and sec 45}}^\circ {\text{ = }}\sqrt 2 $
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{{\text{|}}_{{\text{x = 1}}}}{\text{ = sec}}\left( {45^\circ } \right) \times \dfrac{{\text{x}}}{{1 + {{\text{x}}^2}}}$
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{{\text{|}}_{{\text{x = 1}}}}{\text{ = }}\sqrt 2 \times \dfrac{1}{2}$
$ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}}{{\text{|}}_{{\text{x = 1}}}}{\text{ = }}\dfrac{1}{{\sqrt 2 }}$
Therefore if ${\text{y = sec}}\left( {{\text{ta}}{{\text{n}}^{ - 1}}{\text{x}}} \right)$, then $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ at x = 1 is equal to $\dfrac{1}{{\sqrt 2 }}$. So, Option D is the correct answer.
Note: In order to solve this type of questions the key is to know the concept of differentiation and the general formulae of few first order differentials of trigonometric and inverse trigonometric functions. The term $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$ means we differentiate the function represented by ‘y’ with respect to the variable ‘x’. The value of a function at a variable value is the value of the function when the variable in it takes the given value. The formula of differentials of trigonometric functions have to be memorized to easily solve problems of this type.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

