
If \[y = \sec ({\tan ^{ - 1}}x)\] then \[\dfrac{{dy}}{{dx}}\] at \[x = 1\] is equal to
A. \[\dfrac{1}{{\sqrt 2 }}\]
B. \[\dfrac{1}{2}\]
C. \[1\]
D. \[\sqrt 2 \]
Answer
506.4k+ views
Hint: In mathematics , the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, inverse trigonometric functions are the inverses of the sine, the cosine, the tangent, the cotangent, the secant, and the cosecant functions and are used to obtain an angle from any of the angle's trigonometric ratios.
Complete step-by-step solution:
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus.
The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. For this reason, the derivative is often described as the "instantaneous rate of change", the ratio of the instantaneous change in the dependent variable to that of the independent variable.
We are given \[y = \sec ({\tan ^{ - 1}}x)\]
Now on differentiating both the sides with respect to variable \[x\] we have
\[\dfrac{{dy}}{{dx}} = \sec ({\tan ^{ - 1}}x)\tan ({\tan ^{ - 1}}x)\dfrac{1}{{1 + {x^2}}}\]
We know that the trigonometric function and its inverse trigonometric part gets cancelled or compensated. Therefore we get
\[\dfrac{{dy}}{{dx}} = \sec ({\tan ^{ - 1}}x)(x)\dfrac{1}{{1 + {x^2}}}\]
Putting the value \[x = 1\] we get
\[\dfrac{{dy}}{{dx}} = \sec ({\tan ^{ - 1}}1)\dfrac{1}{{1 + 1}}\]
Which on simplification becomes
\[\dfrac{{dy}}{{dx}} = \sec \left( {\dfrac{\pi }{4}} \right)\dfrac{1}{2}\]
Which on further simplification becomes
\[\dfrac{{dy}}{{dx}} = \left( {\dfrac{1}{2}} \right)\left( {\sqrt 2 } \right) = \dfrac{1}{{\sqrt 2 }}\]
Therefore, the correct answer is Option (A).
Note: Inverse trigonometric functions are the inverses of the sine, the cosine, the tangent, the cotangent, the secant, and the cosecant functions and are used to obtain an angle from any of the angle's trigonometric ratios.While taking derivative of a function , always remember to use chain rule.
Complete step-by-step solution:
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus.
The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. For this reason, the derivative is often described as the "instantaneous rate of change", the ratio of the instantaneous change in the dependent variable to that of the independent variable.
We are given \[y = \sec ({\tan ^{ - 1}}x)\]
Now on differentiating both the sides with respect to variable \[x\] we have
\[\dfrac{{dy}}{{dx}} = \sec ({\tan ^{ - 1}}x)\tan ({\tan ^{ - 1}}x)\dfrac{1}{{1 + {x^2}}}\]
We know that the trigonometric function and its inverse trigonometric part gets cancelled or compensated. Therefore we get
\[\dfrac{{dy}}{{dx}} = \sec ({\tan ^{ - 1}}x)(x)\dfrac{1}{{1 + {x^2}}}\]
Putting the value \[x = 1\] we get
\[\dfrac{{dy}}{{dx}} = \sec ({\tan ^{ - 1}}1)\dfrac{1}{{1 + 1}}\]
Which on simplification becomes
\[\dfrac{{dy}}{{dx}} = \sec \left( {\dfrac{\pi }{4}} \right)\dfrac{1}{2}\]
Which on further simplification becomes
\[\dfrac{{dy}}{{dx}} = \left( {\dfrac{1}{2}} \right)\left( {\sqrt 2 } \right) = \dfrac{1}{{\sqrt 2 }}\]
Therefore, the correct answer is Option (A).
Note: Inverse trigonometric functions are the inverses of the sine, the cosine, the tangent, the cotangent, the secant, and the cosecant functions and are used to obtain an angle from any of the angle's trigonometric ratios.While taking derivative of a function , always remember to use chain rule.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

