
If $y = {\left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right)^n},$ then $\left( {1 + {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + x\dfrac{{dy}}{{dx}}{\text{ is;}}$
$\left( 1 \right){n^2}y$
$\left( 2 \right) - {n^2}y$
$\left( 3 \right) - y$
$\left( 4 \right)2{x^2}y$
Answer
504.3k+ views
Hint: This question deals with the application of standard derivative formulae. Some of them are listed here:
$\left( 1 \right)$ Power rule: $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ .
$\left( 2 \right)$ Derivative of a constant is always zero: $\dfrac{d}{{dx}}\left( a \right) = 0$ .
$\left( 3 \right)$ Product rule: $\dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}$ .
$\left( 4 \right)$ The quotient rule: $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}$ .
$\left( 5 \right)$ Chain rule of differentiation: This is used when we deal with composite functions i.e. functions within functions. For example: $\sin \left( {2{x^3} - 4x} \right)$ , in this example $\sin \left( x \right)$ is outer function and $\left( {2{x^3} - 4x} \right)$ is the inner function. Therefore, $\dfrac{d}{{dx}}\sin \left( {2{x^3} - 4x} \right) = \left( {6{x^2} - 4} \right)\cos \left( {2{x^3} - 4x} \right)$ .
Complete step by step solution:
The given expression for $y$ is ;
$y = {\left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right)^n}{\text{ }}......\left( 1 \right)$
$\left( {\because \dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}} \right)$
Differentiating the above equation with respect to $x$ , we get;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right)^n}$
Using the chain rule of differentiation, we get;
$ \Rightarrow \dfrac{{dy}}{{dx}} = n{\left( {x + \sqrt {1 + {x^2}} } \right)^{n - 1}} \times \left( {1 + \dfrac{1}{2}{{\left( {1 + {x^2}} \right)}^{\dfrac{{ - 1}}{2}}} \times 2x} \right)$
Simplifying the above equation, we get;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{n{{\left( {x + \sqrt {1 + {x^2}} } \right)}^n}}}{{x + \sqrt {1 + {x^2}} }} \times \left( {1 + \dfrac{{2x}}{{2\sqrt {1 + {x^2}} }}} \right)$
On further simplification;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{n{{\left( {x + \sqrt {1 + {x^2}} } \right)}^n}}}{{x + \sqrt {1 + {x^2}} }} \times \left( {\dfrac{{x + \sqrt {1 + {x^2}} }}{{\sqrt {1 + {x^2}} }}} \right)$
Cancelling the common term $x + \sqrt {1 + {x^2}} $ in numerator and denominator we get;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{n{{\left( {x + \sqrt {1 + {x^2}} } \right)}^n}}}{{\sqrt {1 + {x^2}} }}{\text{ }}......\left( 2 \right)$
On cross multiplication;
$ \Rightarrow \dfrac{{dy}}{{dx}} \times \sqrt {1 + {x^2}} = n{\left( {x + \sqrt {1 + {x^2}} } \right)^n}$
Since $y = {\left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right)^n}$ , therefore replacing the value in the above equation we get;
$ \Rightarrow \dfrac{{dy}}{{dx}} \times \sqrt {1 + {x^2}} = ny$
Squaring both the sides , we get ;
$ \Rightarrow \left( {1 + {x^2}} \right){\left( {\dfrac{{dy}}{{dx}}} \right)^2} = {n^2}{y^2}{\text{ }}......\left( 3 \right)$
Differentiating the above equation, we get;
By the product rule of differentiation, we know that;
$\left[ {\because \dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}} \right]$
Let $u = \left( {1 + {x^2}} \right){\text{ and }}v = {\left( {\dfrac{{dy}}{{dx}}} \right)^2}$
$ \Rightarrow \left( {2x} \right){\left( {\dfrac{{dy}}{{dx}}} \right)^2} + \left( {1 + {x^2}} \right) \times 2\dfrac{{dy}}{{dx}} \times {\left( {\dfrac{{dy}}{{dx}}} \right)^2} = {n^2} \times 2y\dfrac{{dy}}{{dx}}$
Further simplifying the above equation , we get;
$ \Rightarrow 2x \times \dfrac{{{d^2}y}}{{d{x^2}}} + \left( {1 + {x^2}} \right)2\left( {\dfrac{{dy}}{{dx}}} \right)\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right) = 2{n^2}y\dfrac{{dy}}{{dx}}$
As we have to calculate the value of $\left( {1 + {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + x\dfrac{{dy}}{{dx}}$ according to the given question , therefore, rearranging the terms to get the desired expression ;
Taking the term $2\dfrac{{dy}}{{dx}}$ outside on the L.H.S. , we get ;
$ \Rightarrow 2\left( {\dfrac{{dy}}{{dx}}} \right)\left( {\left( {1 + {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + x\dfrac{{dy}}{{dx}}} \right) = 2{n^2}y\dfrac{{dy}}{{dx}}$
Further simplifying the above expression;
$ \Rightarrow \left( {1 + {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + x\dfrac{{dy}}{{dx}} = {n^2}y$
Therefore, the correct answer for this question is option $\left( 1 \right)$ i.e. ${n^2}y$.
Note:
We should always simplify the given expression first, before differentiation and always try to proceed according to the expression that has been given to us. There are chances of making a mistake while differentiating, whenever a square root is given in the expression but we know that $\sqrt x = {\left( x \right)^{\dfrac{1}{2}}}$ so, always keep this in mind. With the basic knowledge of algebraic identities and standard derivative formulae of functions , this type of questions can be solved very easily.
$\left( 1 \right)$ Power rule: $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ .
$\left( 2 \right)$ Derivative of a constant is always zero: $\dfrac{d}{{dx}}\left( a \right) = 0$ .
$\left( 3 \right)$ Product rule: $\dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}$ .
$\left( 4 \right)$ The quotient rule: $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}$ .
$\left( 5 \right)$ Chain rule of differentiation: This is used when we deal with composite functions i.e. functions within functions. For example: $\sin \left( {2{x^3} - 4x} \right)$ , in this example $\sin \left( x \right)$ is outer function and $\left( {2{x^3} - 4x} \right)$ is the inner function. Therefore, $\dfrac{d}{{dx}}\sin \left( {2{x^3} - 4x} \right) = \left( {6{x^2} - 4} \right)\cos \left( {2{x^3} - 4x} \right)$ .
Complete step by step solution:
The given expression for $y$ is ;
$y = {\left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right)^n}{\text{ }}......\left( 1 \right)$
$\left( {\because \dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}} \right)$
Differentiating the above equation with respect to $x$ , we get;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right)^n}$
Using the chain rule of differentiation, we get;
$ \Rightarrow \dfrac{{dy}}{{dx}} = n{\left( {x + \sqrt {1 + {x^2}} } \right)^{n - 1}} \times \left( {1 + \dfrac{1}{2}{{\left( {1 + {x^2}} \right)}^{\dfrac{{ - 1}}{2}}} \times 2x} \right)$
Simplifying the above equation, we get;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{n{{\left( {x + \sqrt {1 + {x^2}} } \right)}^n}}}{{x + \sqrt {1 + {x^2}} }} \times \left( {1 + \dfrac{{2x}}{{2\sqrt {1 + {x^2}} }}} \right)$
On further simplification;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{n{{\left( {x + \sqrt {1 + {x^2}} } \right)}^n}}}{{x + \sqrt {1 + {x^2}} }} \times \left( {\dfrac{{x + \sqrt {1 + {x^2}} }}{{\sqrt {1 + {x^2}} }}} \right)$
Cancelling the common term $x + \sqrt {1 + {x^2}} $ in numerator and denominator we get;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{n{{\left( {x + \sqrt {1 + {x^2}} } \right)}^n}}}{{\sqrt {1 + {x^2}} }}{\text{ }}......\left( 2 \right)$
On cross multiplication;
$ \Rightarrow \dfrac{{dy}}{{dx}} \times \sqrt {1 + {x^2}} = n{\left( {x + \sqrt {1 + {x^2}} } \right)^n}$
Since $y = {\left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right)^n}$ , therefore replacing the value in the above equation we get;
$ \Rightarrow \dfrac{{dy}}{{dx}} \times \sqrt {1 + {x^2}} = ny$
Squaring both the sides , we get ;
$ \Rightarrow \left( {1 + {x^2}} \right){\left( {\dfrac{{dy}}{{dx}}} \right)^2} = {n^2}{y^2}{\text{ }}......\left( 3 \right)$
Differentiating the above equation, we get;
By the product rule of differentiation, we know that;
$\left[ {\because \dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}} \right]$
Let $u = \left( {1 + {x^2}} \right){\text{ and }}v = {\left( {\dfrac{{dy}}{{dx}}} \right)^2}$
$ \Rightarrow \left( {2x} \right){\left( {\dfrac{{dy}}{{dx}}} \right)^2} + \left( {1 + {x^2}} \right) \times 2\dfrac{{dy}}{{dx}} \times {\left( {\dfrac{{dy}}{{dx}}} \right)^2} = {n^2} \times 2y\dfrac{{dy}}{{dx}}$
Further simplifying the above equation , we get;
$ \Rightarrow 2x \times \dfrac{{{d^2}y}}{{d{x^2}}} + \left( {1 + {x^2}} \right)2\left( {\dfrac{{dy}}{{dx}}} \right)\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right) = 2{n^2}y\dfrac{{dy}}{{dx}}$
As we have to calculate the value of $\left( {1 + {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + x\dfrac{{dy}}{{dx}}$ according to the given question , therefore, rearranging the terms to get the desired expression ;
Taking the term $2\dfrac{{dy}}{{dx}}$ outside on the L.H.S. , we get ;
$ \Rightarrow 2\left( {\dfrac{{dy}}{{dx}}} \right)\left( {\left( {1 + {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + x\dfrac{{dy}}{{dx}}} \right) = 2{n^2}y\dfrac{{dy}}{{dx}}$
Further simplifying the above expression;
$ \Rightarrow \left( {1 + {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + x\dfrac{{dy}}{{dx}} = {n^2}y$
Therefore, the correct answer for this question is option $\left( 1 \right)$ i.e. ${n^2}y$.
Note:
We should always simplify the given expression first, before differentiation and always try to proceed according to the expression that has been given to us. There are chances of making a mistake while differentiating, whenever a square root is given in the expression but we know that $\sqrt x = {\left( x \right)^{\dfrac{1}{2}}}$ so, always keep this in mind. With the basic knowledge of algebraic identities and standard derivative formulae of functions , this type of questions can be solved very easily.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

