
If \[y = f\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\] and ${f'}(x) = {\sin ^2}x$ , then $\dfrac{{dy}}{{dx}} = $
(1) $\left\{ {\dfrac{{\left( {6{x^2} - 2x + 2} \right)}}{{{{({x^2} + 1)}^2}}}} \right\}\sin \left( {\dfrac{{{{(2x - 1)}^2}}}{{({x^2} + 1)}}} \right)$
(2) $\left\{ {\dfrac{{\left( {6{x^2} - 2x + 2} \right)}}{{{{({x^2} + 1)}^2}}}} \right\}{\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)$
(3) $\left\{ {\dfrac{{\left( { - 2{x^2} + 2x + 2} \right)}}{{{{({x^2} + 1)}^2}}}} \right\}{\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)$
(4) $\left\{ {\dfrac{{\left( { - 2{x^2} + 2x + 2} \right)}}{{{{({x^2} + 1)}^2}}}} \right\}\sin {\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)^2}$
Answer
507.6k+ views
Hint: If a function that $ = f(h(x))$ then we get the $\dfrac{{dy}}{{dx}} = f'(h(x)) \times h'(x)$ , where $\dfrac{{dy}}{{dx}}$ is the differentiation of $y$ with respect to $x$ . The derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument . Differentiation is a tool of calculus . We differentiate the given function and get the required result .
Complete step by step answer:
From the given data \[y = f\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\] ………………………………….(1)
and ${f'}(x) = {\sin ^2}x$……………………………….(2)
Differentiate the above equation (1) with respect to $x$ , we get
$\dfrac{{dy}}{{dx}} = f'\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right).\dfrac{d}{{dx}}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)$
From the above equation (2) , we get
${f'}(x) = {\sin ^2}x$
\[ \Rightarrow f'(x) = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\]
Now we combining above two equation and we get
$ \Rightarrow \dfrac{{dy}}{{dx}} = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\dfrac{d}{{dx}}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)$
Now we differentiate the remaining function by using the formula of $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right)$ , we get
$ \Rightarrow \dfrac{{dy}}{{dx}} = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\dfrac{{\dfrac{d}{{dx}}(2x - 1) \times ({x^2} + 1) - (2x - 1) \times \dfrac{d}{{dx}}({x^2} + 1)}}{{{{({x^2} + 1)}^2}}}$
We find the differentiation $\dfrac{d}{{dx}}(2x - 1)$
$ = 2$
And the differentiation of $\dfrac{d}{{dx}}({x^2} + 1)$
$ = 2x$
We use this in the above equation and calculate
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\dfrac{{2{x^2} + 2 - 2x(2x - 1)}}{{{{({x^2} + 1)}^2}}}\]
$ \Rightarrow \dfrac{{dy}}{{dx}} = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\dfrac{{2{x^2} + 2 - 4{x^2} + 2x}}{{{{({x^2} + 1)}^2}}}$
Now we arrange this according to the options and get
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{( - 2{x^2} + 2x + 2)}}{{{{({x^2} + 1)}^2}}}{\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)$
Therefore, option (3) is correct.
Note:
In this problem we find the derivative of the composition function and apply the normal derivative rule and then we get the required answer . The differentiation formula of $\left( {\dfrac{u}{v}} \right)$ is $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v \times \dfrac{{du}}{{dx}} - u \times \dfrac{{dv}}{{dx}}}}{{{v^2}}}$ . We can find the solution by another way , first we find the $\dfrac{{dh}}{{dx}}$ and collect the given equations and combine them and get the required answer .
$\dfrac{{dh}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)$
$ \Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{{2{x^2} + 2 - 2x(2x - 1)}}{{{{({x^2} + 1)}^2}}}$
\[ \Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{{( - 2{x^2} + 2x + 2)}}{{{{({x^2} + 1)}^2}}}\]
From given data \[y = f\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\]
Differentiating above equation and get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\dfrac{{dh}}{{dx}}\]
Combining above two equations and we get
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{( - 2{x^2} + 2x + 2)}}{{{{({x^2} + 1)}^2}}}{\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)$
This is the required answer.
Complete step by step answer:
From the given data \[y = f\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\] ………………………………….(1)
and ${f'}(x) = {\sin ^2}x$……………………………….(2)
Differentiate the above equation (1) with respect to $x$ , we get
$\dfrac{{dy}}{{dx}} = f'\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right).\dfrac{d}{{dx}}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)$
From the above equation (2) , we get
${f'}(x) = {\sin ^2}x$
\[ \Rightarrow f'(x) = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\]
Now we combining above two equation and we get
$ \Rightarrow \dfrac{{dy}}{{dx}} = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\dfrac{d}{{dx}}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)$
Now we differentiate the remaining function by using the formula of $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right)$ , we get
$ \Rightarrow \dfrac{{dy}}{{dx}} = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\dfrac{{\dfrac{d}{{dx}}(2x - 1) \times ({x^2} + 1) - (2x - 1) \times \dfrac{d}{{dx}}({x^2} + 1)}}{{{{({x^2} + 1)}^2}}}$
We find the differentiation $\dfrac{d}{{dx}}(2x - 1)$
$ = 2$
And the differentiation of $\dfrac{d}{{dx}}({x^2} + 1)$
$ = 2x$
We use this in the above equation and calculate
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\dfrac{{2{x^2} + 2 - 2x(2x - 1)}}{{{{({x^2} + 1)}^2}}}\]
$ \Rightarrow \dfrac{{dy}}{{dx}} = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\dfrac{{2{x^2} + 2 - 4{x^2} + 2x}}{{{{({x^2} + 1)}^2}}}$
Now we arrange this according to the options and get
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{( - 2{x^2} + 2x + 2)}}{{{{({x^2} + 1)}^2}}}{\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)$
Therefore, option (3) is correct.
Note:
In this problem we find the derivative of the composition function and apply the normal derivative rule and then we get the required answer . The differentiation formula of $\left( {\dfrac{u}{v}} \right)$ is $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v \times \dfrac{{du}}{{dx}} - u \times \dfrac{{dv}}{{dx}}}}{{{v^2}}}$ . We can find the solution by another way , first we find the $\dfrac{{dh}}{{dx}}$ and collect the given equations and combine them and get the required answer .
$\dfrac{{dh}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)$
$ \Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{{2{x^2} + 2 - 2x(2x - 1)}}{{{{({x^2} + 1)}^2}}}$
\[ \Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{{( - 2{x^2} + 2x + 2)}}{{{{({x^2} + 1)}^2}}}\]
From given data \[y = f\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\]
Differentiating above equation and get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)\dfrac{{dh}}{{dx}}\]
Combining above two equations and we get
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{( - 2{x^2} + 2x + 2)}}{{{{({x^2} + 1)}^2}}}{\sin ^2}\left( {\dfrac{{(2x - 1)}}{{({x^2} + 1)}}} \right)$
This is the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

