
If $y = \dfrac{{[\sqrt {(a + x)} - \sqrt {(a - x)} ]}}{{[\sqrt {(a + x)} + \sqrt {(a - x)} ]}}$ then $\dfrac{{dy}}{{dx}} = $ ?
A) $\dfrac{{ay}}{{x\sqrt {({a^2} - {x^2})} }}$
B) $\dfrac{{ay}}{{\sqrt {({a^2} - {x^2})} }}$
C) $\dfrac{{ay}}{{x\sqrt {({x^2} - {a^2})} }}$
D) None of these
Answer
509.4k+ views
Hint: In this question given an expression and we have to find its derivative. To find the solution for the problem we first multiply the numerator and denominator by $\sqrt {(a + x)} - \sqrt {(a - x)} $ . Then we will simplify the equation and after that we will differentiate the equation with respect to $x$ and by doing some more mathematical steps we will reach our final answer.
Complete step by step answer:
First we will see the given equation,
$ \Rightarrow y = \dfrac{{[\sqrt {(a + x)} - \sqrt {(a - x)} ]}}{{[\sqrt {(a + x)} + \sqrt {(a - x)} ]}}$
Now, we will do multiplication in numerator and denominator by $\sqrt {(a + x)} - \sqrt {(a - x)} $ . In short, we will take conjugate.
$ \Rightarrow \dfrac{{[\sqrt {(a + x)} - \sqrt {(a - x)} ]}}{{[\sqrt {(a + x)} + \sqrt {(a - x)} ]}} \times \dfrac{{\sqrt {(a + x)} - \sqrt {(a - x)} }}{{\sqrt {(a + x)} - \sqrt {(a - x)} }}$
Now, we need to do some simplification in above expression,
$ \Rightarrow \dfrac{{{{[\sqrt {(a + x)} - \sqrt {(a - x)} ]}^2}}}{{[a + x - a + x]}}$
$ \Rightarrow \dfrac{{{{[\sqrt {(a + x)} - \sqrt {(a - x)} ]}^2}}}{{2x}}$
Now, open bracket of numerator,
$ \Rightarrow \dfrac{{[a + x + a - x - 2\sqrt {(a + x)} \sqrt {(a - x)} }}{{2x}}$
$ \Rightarrow \dfrac{{[2a - 2\sqrt {{a^2} - {x^2}} ]}}{{2x}}$
Now, taking common 2 from numerator and cancelling it with denominator and we will get,
$ \Rightarrow \dfrac{{[a - \sqrt {{a^2} - {x^2}} ]}}{x}$
So we get,
$ \Rightarrow y = \dfrac{{[a - \sqrt {{a^2} - {x^2}} ]}}{x}$
Now call the above equation as equation number $i$ .
Now, differentiate equation $i$ with respect to $x$
$\dfrac{{dy}}{{dx}} = \dfrac{{[x( - \dfrac{1}{2}\sqrt {{a^2} - {x^2}} x - 2x - a(a - \sqrt {{a^2} - {x^2}} ))]}}{{{x^2}}}$
We need to do some simplification on above equation,
$\dfrac{{dy}}{{dx}} = \dfrac{{[{x^2}\sqrt {{a^2} - {x^2}} - a + \sqrt {{a^2} - {x^2}} ]}}{{{x^2}}}$
$\dfrac{{dy}}{{dx}} = \dfrac{{[{a^2} - a\sqrt {{a^2} - {x^2}} ]}}{{{x^2}\sqrt {{a^2} - {x^2}} }}$
Take $a$ common from numerator and we will get,
$\dfrac{{dy}}{{dx}} = \dfrac{{a[a - \sqrt {{a^2} - {x^2}} ]}}{{{x^2}\sqrt {{a^2} - {x^2}} }}$
Compare above equation with equation $i$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ay}}{{x\sqrt {{a^2} - {x^2}} }}$
Therefore, the correct answer is option (A) $\dfrac{{ay}}{{x\sqrt {({a^2} - {x^2})} }}$.
Note:
In such types of questions, students might make mistakes to calculate simple mathematics simplifications then they find that they will not get the right answer. So, in these types of questions students have to do all simple steps to bypass the simple errors so they will get the right answer.
Complete step by step answer:
First we will see the given equation,
$ \Rightarrow y = \dfrac{{[\sqrt {(a + x)} - \sqrt {(a - x)} ]}}{{[\sqrt {(a + x)} + \sqrt {(a - x)} ]}}$
Now, we will do multiplication in numerator and denominator by $\sqrt {(a + x)} - \sqrt {(a - x)} $ . In short, we will take conjugate.
$ \Rightarrow \dfrac{{[\sqrt {(a + x)} - \sqrt {(a - x)} ]}}{{[\sqrt {(a + x)} + \sqrt {(a - x)} ]}} \times \dfrac{{\sqrt {(a + x)} - \sqrt {(a - x)} }}{{\sqrt {(a + x)} - \sqrt {(a - x)} }}$
Now, we need to do some simplification in above expression,
$ \Rightarrow \dfrac{{{{[\sqrt {(a + x)} - \sqrt {(a - x)} ]}^2}}}{{[a + x - a + x]}}$
$ \Rightarrow \dfrac{{{{[\sqrt {(a + x)} - \sqrt {(a - x)} ]}^2}}}{{2x}}$
Now, open bracket of numerator,
$ \Rightarrow \dfrac{{[a + x + a - x - 2\sqrt {(a + x)} \sqrt {(a - x)} }}{{2x}}$
$ \Rightarrow \dfrac{{[2a - 2\sqrt {{a^2} - {x^2}} ]}}{{2x}}$
Now, taking common 2 from numerator and cancelling it with denominator and we will get,
$ \Rightarrow \dfrac{{[a - \sqrt {{a^2} - {x^2}} ]}}{x}$
So we get,
$ \Rightarrow y = \dfrac{{[a - \sqrt {{a^2} - {x^2}} ]}}{x}$
Now call the above equation as equation number $i$ .
Now, differentiate equation $i$ with respect to $x$
$\dfrac{{dy}}{{dx}} = \dfrac{{[x( - \dfrac{1}{2}\sqrt {{a^2} - {x^2}} x - 2x - a(a - \sqrt {{a^2} - {x^2}} ))]}}{{{x^2}}}$
We need to do some simplification on above equation,
$\dfrac{{dy}}{{dx}} = \dfrac{{[{x^2}\sqrt {{a^2} - {x^2}} - a + \sqrt {{a^2} - {x^2}} ]}}{{{x^2}}}$
$\dfrac{{dy}}{{dx}} = \dfrac{{[{a^2} - a\sqrt {{a^2} - {x^2}} ]}}{{{x^2}\sqrt {{a^2} - {x^2}} }}$
Take $a$ common from numerator and we will get,
$\dfrac{{dy}}{{dx}} = \dfrac{{a[a - \sqrt {{a^2} - {x^2}} ]}}{{{x^2}\sqrt {{a^2} - {x^2}} }}$
Compare above equation with equation $i$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ay}}{{x\sqrt {{a^2} - {x^2}} }}$
Therefore, the correct answer is option (A) $\dfrac{{ay}}{{x\sqrt {({a^2} - {x^2})} }}$.
Note:
In such types of questions, students might make mistakes to calculate simple mathematics simplifications then they find that they will not get the right answer. So, in these types of questions students have to do all simple steps to bypass the simple errors so they will get the right answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

