
If $ y = \dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}} $ , prove that $ \dfrac{{dy}}{{dx}} + {y^2} + 1 = 0 $
Answer
481.2k+ views
Hint: We need to convert the equation in a form having an only single term, in this it will be tan x. Then using the quotient rule of derivation we need to find the value of $ \dfrac{{dy}}{{dx}} $ and $ {y^2} $ then accordingly $ \dfrac{{dy}}{{dx}} + {y^2} + 1 = 0 $ will be proved.
Complete step-by-step answer:
The given equation is having both sin x and cos x, we can proceed directly by using the quotient rule of derivation but it will lead to confusion so it’s better to convert the equation into a form having either sin x or cos x or any other trigonometric form. Hence, we need to divide the numerator and the divider both by cos x.
So, $ y = \dfrac{{\dfrac{{\left( {\cos x - \sin x} \right)}}{{\cos x}}}}{{\dfrac{{\left( {\cos x + \sin x} \right)}}{{\cos x}}}} $
$ y = \dfrac{{\left( {\dfrac{{\cos x}}{{\cos x}} - \dfrac{{\sin x}}{{\cos x}}} \right)}}{{\left( {\dfrac{{\cos x}}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}} \right)}} $
And since $ \dfrac{{\sin x}}{{\cos x}} = \tan x $ ;
$ \Rightarrow y = \dfrac{{\left( {1 - \tan x} \right)}}{{\left( {1 + \tan x} \right)}} $
Now, we need to find $ \dfrac{{dy}}{{dx}} $ using the Quotient rule of derivatives. But at first we need to know and memorize the Quotient rule of derivatives which is as follow:
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right] = \dfrac{{g\left( x \right)f'\left( x \right) - f\left( x \right)g'\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}} $
Hence, applying the above rule we will be getting as below:
\[\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{\left( {1 - \tan x} \right)}}{{\left( {1 + \tan x} \right)}}} \right)\]
$ \dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 + \tan x} \right)\dfrac{d}{{dx}}(1 - \tan x) - \left( {1 - \tan x} \right)\dfrac{d}{{dx}}(1 + \tan x)}}{{{{\left( {1 + \tan x} \right)}^2}}} $
Since, $ \dfrac{d}{{dx}}(1 - \tan x) = - {\sec ^2}x $ and $ \dfrac{d}{{dx}}(1 + \tan x) = {\sec ^2}x $
So,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 + \tan x} \right)\left( { - {{\sec }^2}x} \right) - \left( {1 - \tan x} \right)\left( {{{\sec }^2}x} \right)}}{{{{\left( {1 + \tan x} \right)}^2}}} $
\[\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - {{\sec }^2}x - \tan x.{{\sec }^2}x - {{\sec }^2}x + \tan x.{{\sec }^2}x}}{{{{\left( {1 + \tan x} \right)}^2}}}\]
\[\dfrac{{dy}}{{dx}} = \dfrac{{ - 2{{\sec }^2}x}}{{{{\left( {1 + \tan x} \right)}^2}}}\]
Since, $ {\sec ^2}x = (1 + {\tan ^2}x) $
\[\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 2\left( {1 + {{\tan }^2}x} \right)}}{{{{\left( {1 + \tan x} \right)}^2}}}\]
\[\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 2\left( {1 + {{\tan }^2}x} \right)}}{{{{\left( {1 + \tan x} \right)}^2}}} = \dfrac{{ - 2 - 2{{\tan }^2}x}}{{{{\left( {1 + \tan x} \right)}^2}}}\]
Now, we need to find the value of $ {y^2} $ where $ y = \dfrac{{\left( {1 - \tan x} \right)}}{{\left( {1 + \tan x} \right)}} $
So,
$ \Rightarrow {y^2} = \dfrac{{{{\left( {1 - \tan x} \right)}^2}}}{{{{\left( {1 + \tan x} \right)}^2}}} = \dfrac{{1 + {{\tan }^2}x - 2\tan x}}{{{{\left( {1 + \tan x} \right)}^2}}} $
Now, we have to prove that $ \dfrac{{dy}}{{dx}} + {y^2} + 1 = 0 $ , so putting the derived values of $ \dfrac{{dy}}{{dx}} $ and $ {y^2} $ in the given equation we will be having as below
\[\Rightarrow \dfrac{{ - 2 - 2{{\tan }^2}x}}{{{{\left( {1 + \tan x} \right)}^2}}} + \dfrac{{1 + {{\tan }^2}x - 2\tan x}}{{{{\left( {1 + \tan x} \right)}^2}}} + 1 = \dfrac{{ - 2 - 2{{\tan }^2}x + 1 + {{\tan }^2}x - 2\tan x + {{\left( {1 + \tan x} \right)}^2}}}{{{{\left( {1 + \tan x} \right)}^2}}}\]
$ = \dfrac{{ - 2 - 2{{\tan }^2}x + 1 + {{\tan }^2}x - 2\tan x + 1 + {{\tan }^2}x + 2\tan x}}{{{{\left( {1 + \tan x} \right)}^2}}} $
$ = \dfrac{{ - 2 - 2{{\tan }^2}x + 2 + 2{{\tan }^2}x}}{{{{\left( {1 + \tan x} \right)}^2}}} $
Hence proved, $ \dfrac{{dy}}{{dx}} + {y^2} + 1 = 0 $
Note: Kindly don’t confuse or forget while using the Quotient rule of derivatives because if we don’t remember it we won’t be able to proceed further and will be in complete mess. Additionally, we also need to remember the derivatives of all the basic trigonometric forms.
Complete step-by-step answer:
The given equation is having both sin x and cos x, we can proceed directly by using the quotient rule of derivation but it will lead to confusion so it’s better to convert the equation into a form having either sin x or cos x or any other trigonometric form. Hence, we need to divide the numerator and the divider both by cos x.
So, $ y = \dfrac{{\dfrac{{\left( {\cos x - \sin x} \right)}}{{\cos x}}}}{{\dfrac{{\left( {\cos x + \sin x} \right)}}{{\cos x}}}} $
$ y = \dfrac{{\left( {\dfrac{{\cos x}}{{\cos x}} - \dfrac{{\sin x}}{{\cos x}}} \right)}}{{\left( {\dfrac{{\cos x}}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}} \right)}} $
And since $ \dfrac{{\sin x}}{{\cos x}} = \tan x $ ;
$ \Rightarrow y = \dfrac{{\left( {1 - \tan x} \right)}}{{\left( {1 + \tan x} \right)}} $
Now, we need to find $ \dfrac{{dy}}{{dx}} $ using the Quotient rule of derivatives. But at first we need to know and memorize the Quotient rule of derivatives which is as follow:
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right] = \dfrac{{g\left( x \right)f'\left( x \right) - f\left( x \right)g'\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}} $
Hence, applying the above rule we will be getting as below:
\[\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{\left( {1 - \tan x} \right)}}{{\left( {1 + \tan x} \right)}}} \right)\]
$ \dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 + \tan x} \right)\dfrac{d}{{dx}}(1 - \tan x) - \left( {1 - \tan x} \right)\dfrac{d}{{dx}}(1 + \tan x)}}{{{{\left( {1 + \tan x} \right)}^2}}} $
Since, $ \dfrac{d}{{dx}}(1 - \tan x) = - {\sec ^2}x $ and $ \dfrac{d}{{dx}}(1 + \tan x) = {\sec ^2}x $
So,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 + \tan x} \right)\left( { - {{\sec }^2}x} \right) - \left( {1 - \tan x} \right)\left( {{{\sec }^2}x} \right)}}{{{{\left( {1 + \tan x} \right)}^2}}} $
\[\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - {{\sec }^2}x - \tan x.{{\sec }^2}x - {{\sec }^2}x + \tan x.{{\sec }^2}x}}{{{{\left( {1 + \tan x} \right)}^2}}}\]
\[\dfrac{{dy}}{{dx}} = \dfrac{{ - 2{{\sec }^2}x}}{{{{\left( {1 + \tan x} \right)}^2}}}\]
Since, $ {\sec ^2}x = (1 + {\tan ^2}x) $
\[\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 2\left( {1 + {{\tan }^2}x} \right)}}{{{{\left( {1 + \tan x} \right)}^2}}}\]
\[\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 2\left( {1 + {{\tan }^2}x} \right)}}{{{{\left( {1 + \tan x} \right)}^2}}} = \dfrac{{ - 2 - 2{{\tan }^2}x}}{{{{\left( {1 + \tan x} \right)}^2}}}\]
Now, we need to find the value of $ {y^2} $ where $ y = \dfrac{{\left( {1 - \tan x} \right)}}{{\left( {1 + \tan x} \right)}} $
So,
$ \Rightarrow {y^2} = \dfrac{{{{\left( {1 - \tan x} \right)}^2}}}{{{{\left( {1 + \tan x} \right)}^2}}} = \dfrac{{1 + {{\tan }^2}x - 2\tan x}}{{{{\left( {1 + \tan x} \right)}^2}}} $
Now, we have to prove that $ \dfrac{{dy}}{{dx}} + {y^2} + 1 = 0 $ , so putting the derived values of $ \dfrac{{dy}}{{dx}} $ and $ {y^2} $ in the given equation we will be having as below
\[\Rightarrow \dfrac{{ - 2 - 2{{\tan }^2}x}}{{{{\left( {1 + \tan x} \right)}^2}}} + \dfrac{{1 + {{\tan }^2}x - 2\tan x}}{{{{\left( {1 + \tan x} \right)}^2}}} + 1 = \dfrac{{ - 2 - 2{{\tan }^2}x + 1 + {{\tan }^2}x - 2\tan x + {{\left( {1 + \tan x} \right)}^2}}}{{{{\left( {1 + \tan x} \right)}^2}}}\]
$ = \dfrac{{ - 2 - 2{{\tan }^2}x + 1 + {{\tan }^2}x - 2\tan x + 1 + {{\tan }^2}x + 2\tan x}}{{{{\left( {1 + \tan x} \right)}^2}}} $
$ = \dfrac{{ - 2 - 2{{\tan }^2}x + 2 + 2{{\tan }^2}x}}{{{{\left( {1 + \tan x} \right)}^2}}} $
Hence proved, $ \dfrac{{dy}}{{dx}} + {y^2} + 1 = 0 $
Note: Kindly don’t confuse or forget while using the Quotient rule of derivatives because if we don’t remember it we won’t be able to proceed further and will be in complete mess. Additionally, we also need to remember the derivatives of all the basic trigonometric forms.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
