
If $y = \cos x,{y_n} = \dfrac{{{d^n}\left( {\cos x} \right)}}{{d{x^n}}}$, then $\left| {\begin{array}{*{20}{c}}
{{y_4}}&{{y_5}}&{{y_6}} \\
{{y_7}}&{{y_8}}&{{y_9}} \\
{{y_{10}}}&{{y_{11}}}&{{y_{12}}}
\end{array}} \right|$=....
$\left( a \right)0$
$\left( b \right) - \cos x$
$\left( c \right)\cos x$
$\left( d \right)\sin x$
Answer
576.6k+ views
Hint: In this particular question use the concept that the differentiation of cos x is – sin x and the differentiation of sin x is cos x, later on use the concept of expansion of determinant so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given equation
$y = \cos x$.............. (1)
${y_n} = \dfrac{{{d^n}\left( {\cos x} \right)}}{{d{x^n}}}$
Now as we know that the differentiation of cos x is – sin x, and the differentiation of sin x is cos x so differentiate equation (1) w.r.t x we have,
$ \Rightarrow {y_1} = \dfrac{{d\left( {\cos x} \right)}}{{dx}} = - \sin x$
Now again differentiate w.r.t x we have,
$ \Rightarrow {y_2} = - \dfrac{d}{{dx}}\sin x = - \cos x$
Now again differentiate w.r.t x we have,
$ \Rightarrow {y_3} = - \dfrac{d}{{dx}}\cos x = \sin x$
Now again differentiate w.r.t x we have,
$ \Rightarrow {y_4} = \dfrac{d}{{dx}}\sin x = \cos x$
So as we see that ${y_4}$ is the same as y, so the value will be repeated.
$ \Rightarrow {y_5} = y = {y_9} - \sin x$
$ \Rightarrow {y_6} = {y_2} = {y_{10}} = - \cos x$
$ \Rightarrow {y_7} = {y_3} = {y_{11}} = \sin x$
$ \Rightarrow {y_8} = {y_4} = {y_{12}} = \cos x$
Now substitute these values in the given determinant we have,
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{\cos x}&{ - \sin x}&{ - \cos x} \\
{\sin x}&{\cos x}&{ - \sin x} \\
{ - \cos x}&{\sin x}&{\cos x}
\end{array}} \right|\]
Now expand this determinant we have,
\[ \Rightarrow \cos x\left| {\begin{array}{*{20}{c}}
{\cos x}&{ - \sin x} \\
{\sin x}&{\cos x}
\end{array}} \right| - \left( { - \sin x} \right)\left| {\begin{array}{*{20}{c}}
{\sin x}&{ - \sin x} \\
{ - \cos x}&{\cos x}
\end{array}} \right| - \cos x\left| {\begin{array}{*{20}{c}}
{\sin x}&{\cos x} \\
{ - \cos x}&{\sin x}
\end{array}} \right|\]
Now expand the mini determinant we have,
\[ \Rightarrow \cos x\left( {{{\cos }^2}x - \left( { - {{\sin }^2}x} \right)} \right) - \left( { - \sin x} \right)\left( {\sin x\cos x - \left( { - \sin x} \right)\left( { - \cos x} \right)} \right) - \cos x\left( {{{\sin }^2}x - \left( { - {{\cos }^2}x} \right)} \right)\]
Now simplify it we have,
\[ \Rightarrow \cos x\left( {{{\cos }^2}x + {{\sin }^2}x} \right) + \sin x\left( {\sin x\cos x - \sin x\cos x} \right) - \cos x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\]
\[ \Rightarrow \cos x\left( {{{\cos }^2}x + {{\sin }^2}x} \right) + 0 - \cos x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\]
\[ \Rightarrow \cos x\left( {{{\cos }^2}x + {{\sin }^2}x} \right) - \cos x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\]
\[ \Rightarrow 0\]
Hence option (a) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation of sin x as well as cos x which is stated above, and always recall how to expand the determinant so expand it as above and simplify we will get the required answer.
Complete step-by-step answer:
Given equation
$y = \cos x$.............. (1)
${y_n} = \dfrac{{{d^n}\left( {\cos x} \right)}}{{d{x^n}}}$
Now as we know that the differentiation of cos x is – sin x, and the differentiation of sin x is cos x so differentiate equation (1) w.r.t x we have,
$ \Rightarrow {y_1} = \dfrac{{d\left( {\cos x} \right)}}{{dx}} = - \sin x$
Now again differentiate w.r.t x we have,
$ \Rightarrow {y_2} = - \dfrac{d}{{dx}}\sin x = - \cos x$
Now again differentiate w.r.t x we have,
$ \Rightarrow {y_3} = - \dfrac{d}{{dx}}\cos x = \sin x$
Now again differentiate w.r.t x we have,
$ \Rightarrow {y_4} = \dfrac{d}{{dx}}\sin x = \cos x$
So as we see that ${y_4}$ is the same as y, so the value will be repeated.
$ \Rightarrow {y_5} = y = {y_9} - \sin x$
$ \Rightarrow {y_6} = {y_2} = {y_{10}} = - \cos x$
$ \Rightarrow {y_7} = {y_3} = {y_{11}} = \sin x$
$ \Rightarrow {y_8} = {y_4} = {y_{12}} = \cos x$
Now substitute these values in the given determinant we have,
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{\cos x}&{ - \sin x}&{ - \cos x} \\
{\sin x}&{\cos x}&{ - \sin x} \\
{ - \cos x}&{\sin x}&{\cos x}
\end{array}} \right|\]
Now expand this determinant we have,
\[ \Rightarrow \cos x\left| {\begin{array}{*{20}{c}}
{\cos x}&{ - \sin x} \\
{\sin x}&{\cos x}
\end{array}} \right| - \left( { - \sin x} \right)\left| {\begin{array}{*{20}{c}}
{\sin x}&{ - \sin x} \\
{ - \cos x}&{\cos x}
\end{array}} \right| - \cos x\left| {\begin{array}{*{20}{c}}
{\sin x}&{\cos x} \\
{ - \cos x}&{\sin x}
\end{array}} \right|\]
Now expand the mini determinant we have,
\[ \Rightarrow \cos x\left( {{{\cos }^2}x - \left( { - {{\sin }^2}x} \right)} \right) - \left( { - \sin x} \right)\left( {\sin x\cos x - \left( { - \sin x} \right)\left( { - \cos x} \right)} \right) - \cos x\left( {{{\sin }^2}x - \left( { - {{\cos }^2}x} \right)} \right)\]
Now simplify it we have,
\[ \Rightarrow \cos x\left( {{{\cos }^2}x + {{\sin }^2}x} \right) + \sin x\left( {\sin x\cos x - \sin x\cos x} \right) - \cos x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\]
\[ \Rightarrow \cos x\left( {{{\cos }^2}x + {{\sin }^2}x} \right) + 0 - \cos x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\]
\[ \Rightarrow \cos x\left( {{{\cos }^2}x + {{\sin }^2}x} \right) - \cos x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\]
\[ \Rightarrow 0\]
Hence option (a) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation of sin x as well as cos x which is stated above, and always recall how to expand the determinant so expand it as above and simplify we will get the required answer.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

