
If $y = \cos x,{y_n} = \dfrac{{{d^n}\left( {\cos x} \right)}}{{d{x^n}}}$, then $\left| {\begin{array}{*{20}{c}}
{{y_4}}&{{y_5}}&{{y_6}} \\
{{y_7}}&{{y_8}}&{{y_9}} \\
{{y_{10}}}&{{y_{11}}}&{{y_{12}}}
\end{array}} \right|$=....
$\left( a \right)0$
$\left( b \right) - \cos x$
$\left( c \right)\cos x$
$\left( d \right)\sin x$
Answer
511.5k+ views
Hint: In this particular question use the concept that the differentiation of cos x is – sin x and the differentiation of sin x is cos x, later on use the concept of expansion of determinant so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given equation
$y = \cos x$.............. (1)
${y_n} = \dfrac{{{d^n}\left( {\cos x} \right)}}{{d{x^n}}}$
Now as we know that the differentiation of cos x is – sin x, and the differentiation of sin x is cos x so differentiate equation (1) w.r.t x we have,
$ \Rightarrow {y_1} = \dfrac{{d\left( {\cos x} \right)}}{{dx}} = - \sin x$
Now again differentiate w.r.t x we have,
$ \Rightarrow {y_2} = - \dfrac{d}{{dx}}\sin x = - \cos x$
Now again differentiate w.r.t x we have,
$ \Rightarrow {y_3} = - \dfrac{d}{{dx}}\cos x = \sin x$
Now again differentiate w.r.t x we have,
$ \Rightarrow {y_4} = \dfrac{d}{{dx}}\sin x = \cos x$
So as we see that ${y_4}$ is the same as y, so the value will be repeated.
$ \Rightarrow {y_5} = y = {y_9} - \sin x$
$ \Rightarrow {y_6} = {y_2} = {y_{10}} = - \cos x$
$ \Rightarrow {y_7} = {y_3} = {y_{11}} = \sin x$
$ \Rightarrow {y_8} = {y_4} = {y_{12}} = \cos x$
Now substitute these values in the given determinant we have,
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{\cos x}&{ - \sin x}&{ - \cos x} \\
{\sin x}&{\cos x}&{ - \sin x} \\
{ - \cos x}&{\sin x}&{\cos x}
\end{array}} \right|\]
Now expand this determinant we have,
\[ \Rightarrow \cos x\left| {\begin{array}{*{20}{c}}
{\cos x}&{ - \sin x} \\
{\sin x}&{\cos x}
\end{array}} \right| - \left( { - \sin x} \right)\left| {\begin{array}{*{20}{c}}
{\sin x}&{ - \sin x} \\
{ - \cos x}&{\cos x}
\end{array}} \right| - \cos x\left| {\begin{array}{*{20}{c}}
{\sin x}&{\cos x} \\
{ - \cos x}&{\sin x}
\end{array}} \right|\]
Now expand the mini determinant we have,
\[ \Rightarrow \cos x\left( {{{\cos }^2}x - \left( { - {{\sin }^2}x} \right)} \right) - \left( { - \sin x} \right)\left( {\sin x\cos x - \left( { - \sin x} \right)\left( { - \cos x} \right)} \right) - \cos x\left( {{{\sin }^2}x - \left( { - {{\cos }^2}x} \right)} \right)\]
Now simplify it we have,
\[ \Rightarrow \cos x\left( {{{\cos }^2}x + {{\sin }^2}x} \right) + \sin x\left( {\sin x\cos x - \sin x\cos x} \right) - \cos x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\]
\[ \Rightarrow \cos x\left( {{{\cos }^2}x + {{\sin }^2}x} \right) + 0 - \cos x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\]
\[ \Rightarrow \cos x\left( {{{\cos }^2}x + {{\sin }^2}x} \right) - \cos x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\]
\[ \Rightarrow 0\]
Hence option (a) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation of sin x as well as cos x which is stated above, and always recall how to expand the determinant so expand it as above and simplify we will get the required answer.
Complete step-by-step answer:
Given equation
$y = \cos x$.............. (1)
${y_n} = \dfrac{{{d^n}\left( {\cos x} \right)}}{{d{x^n}}}$
Now as we know that the differentiation of cos x is – sin x, and the differentiation of sin x is cos x so differentiate equation (1) w.r.t x we have,
$ \Rightarrow {y_1} = \dfrac{{d\left( {\cos x} \right)}}{{dx}} = - \sin x$
Now again differentiate w.r.t x we have,
$ \Rightarrow {y_2} = - \dfrac{d}{{dx}}\sin x = - \cos x$
Now again differentiate w.r.t x we have,
$ \Rightarrow {y_3} = - \dfrac{d}{{dx}}\cos x = \sin x$
Now again differentiate w.r.t x we have,
$ \Rightarrow {y_4} = \dfrac{d}{{dx}}\sin x = \cos x$
So as we see that ${y_4}$ is the same as y, so the value will be repeated.
$ \Rightarrow {y_5} = y = {y_9} - \sin x$
$ \Rightarrow {y_6} = {y_2} = {y_{10}} = - \cos x$
$ \Rightarrow {y_7} = {y_3} = {y_{11}} = \sin x$
$ \Rightarrow {y_8} = {y_4} = {y_{12}} = \cos x$
Now substitute these values in the given determinant we have,
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{\cos x}&{ - \sin x}&{ - \cos x} \\
{\sin x}&{\cos x}&{ - \sin x} \\
{ - \cos x}&{\sin x}&{\cos x}
\end{array}} \right|\]
Now expand this determinant we have,
\[ \Rightarrow \cos x\left| {\begin{array}{*{20}{c}}
{\cos x}&{ - \sin x} \\
{\sin x}&{\cos x}
\end{array}} \right| - \left( { - \sin x} \right)\left| {\begin{array}{*{20}{c}}
{\sin x}&{ - \sin x} \\
{ - \cos x}&{\cos x}
\end{array}} \right| - \cos x\left| {\begin{array}{*{20}{c}}
{\sin x}&{\cos x} \\
{ - \cos x}&{\sin x}
\end{array}} \right|\]
Now expand the mini determinant we have,
\[ \Rightarrow \cos x\left( {{{\cos }^2}x - \left( { - {{\sin }^2}x} \right)} \right) - \left( { - \sin x} \right)\left( {\sin x\cos x - \left( { - \sin x} \right)\left( { - \cos x} \right)} \right) - \cos x\left( {{{\sin }^2}x - \left( { - {{\cos }^2}x} \right)} \right)\]
Now simplify it we have,
\[ \Rightarrow \cos x\left( {{{\cos }^2}x + {{\sin }^2}x} \right) + \sin x\left( {\sin x\cos x - \sin x\cos x} \right) - \cos x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\]
\[ \Rightarrow \cos x\left( {{{\cos }^2}x + {{\sin }^2}x} \right) + 0 - \cos x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\]
\[ \Rightarrow \cos x\left( {{{\cos }^2}x + {{\sin }^2}x} \right) - \cos x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\]
\[ \Rightarrow 0\]
Hence option (a) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation of sin x as well as cos x which is stated above, and always recall how to expand the determinant so expand it as above and simplify we will get the required answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
