
If $ y = 500{e^{7x}} + 600{e^{ - 7x}} $ , show that $ \dfrac{{{d^2}y}}{{d{x^2}}} = 49y $ .
Answer
522.3k+ views
Hint: Here, we have to prove that the second order differential of the equation $ y = 500{e^{7x}} + 600{e^{ - 7x}} $ is equal to 49y. For that we need to differentiate the equation $ y = 500{e^{7x}} + 600{e^{ - 7x}} $ twice and take out the common terms and we will get our answer.
Complete step-by-step answer:
In this question, we are given a function and we need to prove that its second order derivative is equal to 49y.
Given function is: $ y = 500{e^{7x}} + 600{e^{ - 7x}} $ - - - - - - - - - - - - - (1)
And we need to prove that $ \dfrac{{{d^2}y}}{{d{x^2}}} = 49y $ .
Now, let us differentiate equation (1). Therefore, we get
$
\Rightarrow y = 500{e^{7x}} + 600{e^{ - 7x}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {500{e^{7x}}} \right) + \dfrac{d}{{dx}}\left( {600{e^{ - 7x}}} \right) \;
$
Now, we know that $ \dfrac{d}{{dx}}\left( {ax} \right) = a\dfrac{d}{{dx}}x $ . Therefore, we get
$ \Rightarrow \dfrac{{dy}}{{dx}} = 500\dfrac{d}{{dx}}\left( {{e^{7x}}} \right) + 600\dfrac{d}{{dx}}\left( {{e^{ - 7x}}} \right) $
Now, we know that the derivative of
$ \Rightarrow \dfrac{d}{{dx}}\left( {{e^{ax}}} \right) = a{e^x} $
Therefore, we get
$ \Rightarrow \dfrac{{dy}}{{dx}} = 7 \times 500{e^{7x}} - 7 \times 600{e^{ - 7x}} $ - - - - - - - - - - - - (2)
This is the first order differential equation.
Now, we need to find the second order differential. So, differentiating equation (2) again w.r.t x, we get
$
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 7 \times 7 \times 500{e^{7x}} - \left( { - 7} \right) \times 7 \times 600{e^{ - 7x}} \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 7 \times 7 \times 500{e^{7x}} + 7 \times 7 \times 600{e^{ - 7x}} \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 49 \times 500{e^{7x}} + 49 \times 600{e^{ - 7x}} \;
$
Here, we can take out 49 as common. Therefore, we get
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 49\left( {500{e^{7x}} + 600{e^{ - 7x}}} \right) $ - - - - - - - - - - - - - - - - - - (3)
Now, we have $ y = 500{e^{7x}} + 600{e^{ - 7x}} $
Therefore, equation (3) becomes
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 49y $
Hence, we have proved that $ \dfrac{{{d^2}y}}{{d{x^2}}} = 49y $ .
Note: This was a simple formula based differential question. Below are some important differentials one should keep in mind always.
I. $ \dfrac{d}{{dx}}{a^x} = {a^x}\log a $
II. $ \dfrac{d}{{dx}}{e^{ax}} = a{e^x} $
III. $ \dfrac{d}{{dx}}{x^n} = n{x^{n - 1}} $
Complete step-by-step answer:
In this question, we are given a function and we need to prove that its second order derivative is equal to 49y.
Given function is: $ y = 500{e^{7x}} + 600{e^{ - 7x}} $ - - - - - - - - - - - - - (1)
And we need to prove that $ \dfrac{{{d^2}y}}{{d{x^2}}} = 49y $ .
Now, let us differentiate equation (1). Therefore, we get
$
\Rightarrow y = 500{e^{7x}} + 600{e^{ - 7x}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {500{e^{7x}}} \right) + \dfrac{d}{{dx}}\left( {600{e^{ - 7x}}} \right) \;
$
Now, we know that $ \dfrac{d}{{dx}}\left( {ax} \right) = a\dfrac{d}{{dx}}x $ . Therefore, we get
$ \Rightarrow \dfrac{{dy}}{{dx}} = 500\dfrac{d}{{dx}}\left( {{e^{7x}}} \right) + 600\dfrac{d}{{dx}}\left( {{e^{ - 7x}}} \right) $
Now, we know that the derivative of
$ \Rightarrow \dfrac{d}{{dx}}\left( {{e^{ax}}} \right) = a{e^x} $
Therefore, we get
$ \Rightarrow \dfrac{{dy}}{{dx}} = 7 \times 500{e^{7x}} - 7 \times 600{e^{ - 7x}} $ - - - - - - - - - - - - (2)
This is the first order differential equation.
Now, we need to find the second order differential. So, differentiating equation (2) again w.r.t x, we get
$
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 7 \times 7 \times 500{e^{7x}} - \left( { - 7} \right) \times 7 \times 600{e^{ - 7x}} \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 7 \times 7 \times 500{e^{7x}} + 7 \times 7 \times 600{e^{ - 7x}} \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 49 \times 500{e^{7x}} + 49 \times 600{e^{ - 7x}} \;
$
Here, we can take out 49 as common. Therefore, we get
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 49\left( {500{e^{7x}} + 600{e^{ - 7x}}} \right) $ - - - - - - - - - - - - - - - - - - (3)
Now, we have $ y = 500{e^{7x}} + 600{e^{ - 7x}} $
Therefore, equation (3) becomes
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 49y $
Hence, we have proved that $ \dfrac{{{d^2}y}}{{d{x^2}}} = 49y $ .
Note: This was a simple formula based differential question. Below are some important differentials one should keep in mind always.
I. $ \dfrac{d}{{dx}}{a^x} = {a^x}\log a $
II. $ \dfrac{d}{{dx}}{e^{ax}} = a{e^x} $
III. $ \dfrac{d}{{dx}}{x^n} = n{x^{n - 1}} $
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

