
If ${{x}^{\dfrac{2}{3}}}+{{y}^{\dfrac{2}{3}}}={{a}^{\dfrac{2}{3}}}$, then $\dfrac{dy}{dx}$
A. ${{\left( \dfrac{y}{3} \right)}^{\dfrac{1}{3}}}$
B. ${{\left( -\dfrac{y}{x} \right)}^{\dfrac{1}{3}}}$
C. ${{\left( \dfrac{x}{y} \right)}^{\dfrac{1}{3}}}$
D. ${{\left( -\dfrac{x}{y} \right)}^{\dfrac{1}{3}}}$
Answer
512.4k+ views
Hint: We try to form the indices formula for the value $\dfrac{2}{3}$. We take the indices form of ${{x}^{\dfrac{2}{3}}},{{y}^{\dfrac{2}{3}}},{{a}^{\dfrac{2}{3}}}$. We multiply the fraction with 3 to find the simplified form. The differentiation of constant gives 0. Then we use the formula of \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\] to find the derivatives.
Complete step by step answer:
We need to find the value of $\dfrac{dy}{dx}$ form of ${{x}^{\dfrac{2}{3}}}+{{y}^{\dfrac{2}{3}}}={{a}^{\dfrac{2}{3}}}$. These are cube root forms.
The given value is the form of indices. We are trying to find the root value of ${{x}^{\dfrac{2}{3}}},{{y}^{\dfrac{2}{3}}},{{a}^{\dfrac{2}{3}}}$.
We find the individual differentiations. So,
$\dfrac{d}{dx}\left( {{x}^{\dfrac{2}{3}}} \right)+\dfrac{d}{dx}\left( {{y}^{\dfrac{2}{3}}} \right)=\dfrac{d}{dx}\left( {{a}^{\dfrac{2}{3}}} \right)$
We use the derivative formula of \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\].
We find the derivatives of
\[\dfrac{d}{dx}\left( {{x}^{\dfrac{2}{3}}} \right)=\dfrac{{{x}^{\dfrac{2}{3}-1}}}{\dfrac{2}{3}-1} \\
\Rightarrow \dfrac{d}{dx}\left( {{x}^{\dfrac{2}{3}}} \right)=-3{{x}^{-\dfrac{1}{3}}}\]
\[\Rightarrow \dfrac{d}{dx}\left( {{y}^{\dfrac{2}{3}}} \right)=\dfrac{{{y}^{\dfrac{2}{3}-1}}}{\dfrac{2}{3}-1}\dfrac{dy}{dx} \\
\Rightarrow \dfrac{d}{dx}\left( {{y}^{\dfrac{2}{3}}} \right)=-3{{y}^{-\dfrac{1}{3}}}\dfrac{dy}{dx}\],
$\Rightarrow \dfrac{d}{dx}\left( {{a}^{\dfrac{2}{3}}} \right)=0$.
For the differentiation of $\dfrac{d}{dx}\left( {{y}^{\dfrac{2}{3}}} \right)$, we used chain rule.
We now simplify the derivative equation.
\[-3{{x}^{-\dfrac{1}{3}}}-3{{y}^{-\dfrac{1}{3}}}\dfrac{dy}{dx}=0 \\
\Rightarrow 3{{y}^{-\dfrac{1}{3}}}\dfrac{dy}{dx}=-3{{x}^{-\dfrac{1}{3}}} \\
\Rightarrow \dfrac{dy}{dx}=-\dfrac{{{x}^{-\dfrac{1}{3}}}}{{{y}^{-\dfrac{1}{3}}}} \\
\Rightarrow \dfrac{dy}{dx}=-{{\left( \dfrac{x}{y} \right)}^{-\dfrac{1}{3}}} \\
\therefore \dfrac{dy}{dx}={{\left( -\dfrac{y}{x} \right)}^{\dfrac{1}{3}}} \]
Therefore, the correct option is B.
Note:The derivative form of \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\] is applicable for all values of $n\in \mathbb{R}\backslash \left\{ 0 \right\}$. We also could have used chain rule where we need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\].
Complete step by step answer:
We need to find the value of $\dfrac{dy}{dx}$ form of ${{x}^{\dfrac{2}{3}}}+{{y}^{\dfrac{2}{3}}}={{a}^{\dfrac{2}{3}}}$. These are cube root forms.
The given value is the form of indices. We are trying to find the root value of ${{x}^{\dfrac{2}{3}}},{{y}^{\dfrac{2}{3}}},{{a}^{\dfrac{2}{3}}}$.
We find the individual differentiations. So,
$\dfrac{d}{dx}\left( {{x}^{\dfrac{2}{3}}} \right)+\dfrac{d}{dx}\left( {{y}^{\dfrac{2}{3}}} \right)=\dfrac{d}{dx}\left( {{a}^{\dfrac{2}{3}}} \right)$
We use the derivative formula of \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\].
We find the derivatives of
\[\dfrac{d}{dx}\left( {{x}^{\dfrac{2}{3}}} \right)=\dfrac{{{x}^{\dfrac{2}{3}-1}}}{\dfrac{2}{3}-1} \\
\Rightarrow \dfrac{d}{dx}\left( {{x}^{\dfrac{2}{3}}} \right)=-3{{x}^{-\dfrac{1}{3}}}\]
\[\Rightarrow \dfrac{d}{dx}\left( {{y}^{\dfrac{2}{3}}} \right)=\dfrac{{{y}^{\dfrac{2}{3}-1}}}{\dfrac{2}{3}-1}\dfrac{dy}{dx} \\
\Rightarrow \dfrac{d}{dx}\left( {{y}^{\dfrac{2}{3}}} \right)=-3{{y}^{-\dfrac{1}{3}}}\dfrac{dy}{dx}\],
$\Rightarrow \dfrac{d}{dx}\left( {{a}^{\dfrac{2}{3}}} \right)=0$.
For the differentiation of $\dfrac{d}{dx}\left( {{y}^{\dfrac{2}{3}}} \right)$, we used chain rule.
We now simplify the derivative equation.
\[-3{{x}^{-\dfrac{1}{3}}}-3{{y}^{-\dfrac{1}{3}}}\dfrac{dy}{dx}=0 \\
\Rightarrow 3{{y}^{-\dfrac{1}{3}}}\dfrac{dy}{dx}=-3{{x}^{-\dfrac{1}{3}}} \\
\Rightarrow \dfrac{dy}{dx}=-\dfrac{{{x}^{-\dfrac{1}{3}}}}{{{y}^{-\dfrac{1}{3}}}} \\
\Rightarrow \dfrac{dy}{dx}=-{{\left( \dfrac{x}{y} \right)}^{-\dfrac{1}{3}}} \\
\therefore \dfrac{dy}{dx}={{\left( -\dfrac{y}{x} \right)}^{\dfrac{1}{3}}} \]
Therefore, the correct option is B.
Note:The derivative form of \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\] is applicable for all values of $n\in \mathbb{R}\backslash \left\{ 0 \right\}$. We also could have used chain rule where we need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

