
If \[x=a\cos \theta ,y=b\sin \theta \], then \[\dfrac{{{d}^{3}}y}{d{{x}^{3}}}\]is equal to
(A) \[\left( \dfrac{-3b}{{{a}^{3}}} \right)\text{cose}{{\text{c}}^{4}}\theta {{\cot }^{4}}\theta \]
(B) \[\left( \dfrac{3b}{{{a}^{3}}} \right)\text{cose}{{\text{c}}^{4}}\theta \cot \theta \]
(C) \[\left( \dfrac{-3b}{{{a}^{3}}} \right)\text{cose}{{\text{c}}^{4}}\theta \cot \theta \]
(D) None of the above
Answer
587.7k+ views
Hint: If \[x=f(\theta )\] and\[y=g(\theta )\] then this represents the parametric form of x and y in terms of $\theta $ , and its differentiation is done accordingly by \[\dfrac{dy}{dx}=\dfrac{dy}{d\theta }\times \dfrac{d\theta }{dx}\] , then \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{d\theta }(\dfrac{dy}{dx})\times \dfrac{d\theta }{dx}\]and finally \[\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{d}{d\theta }(\dfrac{{{d}^{2}}y}{d{{x}^{2}}})\times \dfrac{d\theta }{dx}\]. Then, using this method we will find the solution of \[\dfrac{{{d}^{3}}y}{d{{x}^{3}}}\] for \[x=a\cos \theta ,y=b\sin \theta \].
Complete step by step answer:
We are given the expressions \[x=a\cos \theta \] and \[y=b\sin \theta \]. It can clearly be seen that \[x\] and \[y\]are in parametric form and \[\theta \] is the parameter.
Hence , in order to find the value of the derivative \[\dfrac{dy}{dx}\], first we have to differentiate \[x\] and \[y\]separately with respect to \[\theta \].
i.e. \[\dfrac{dy}{dx}=\dfrac{dy}{d\theta }\times \dfrac{d\theta }{dx}\]
Now, we will differentiate \[x\] and \[y\] separately with respect to \[\theta \].
On differentiating \[y\] with respect to \[\theta \], we get
\[\dfrac{dy}{d\theta }=\dfrac{d}{d\theta }\left( b\sin \theta \right)=b\cos \theta \]
And, on differentiating \[x\] with respect to \[\theta \], we get
\[\dfrac{dx}{d\theta }=\dfrac{d}{d\theta }\left( a\cos \theta \right)=-a\sin \theta \]
Now , we know inverse function theorem of differentiation says that if \[x=f(\theta )\] and \[\dfrac{dx}{d\theta }=x'\] then , \[\dfrac{d\theta }{dx}=\theta '=\dfrac{1}{x'}\] .
So , we can write \[\dfrac{d\theta }{dx}=\dfrac{1}{\dfrac{dx}{d\theta }}=\dfrac{1}{-a\sin \theta }\].
Now, we will substitute the values of \[\dfrac{dy}{d\theta }\] and \[\dfrac{d\theta }{dx}\] in the expression of \[\dfrac{dy}{dx}\].
So , on substituting the values of \[\dfrac{dy}{d\theta }\] and \[\dfrac{d\theta }{dx}\] in the expression of \[\dfrac{dy}{dx}\], we get \[\dfrac{dy}{dx}=\dfrac{b\cos \theta }{-a\sin \theta }=-\dfrac{b}{a}\cot \theta \]
Again , we can see that \[\dfrac{dy}{dx}\]is a function of \[\theta \].
So , we can say \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{d\theta }\left( \dfrac{dy}{dx} \right).\dfrac{d\theta }{dx}\]
Now , we will substitute the values of \[\dfrac{dy}{dx}\] and \[\dfrac{d\theta }{dx}\] in the expression of \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
So , on substituting the values of \[\dfrac{dy}{dx}\] and \[\dfrac{d\theta }{dx}\] in the expression of \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\], we get ,
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-b}{a}\text{(}-\text{cose}{{\text{c}}^{2}}\theta )\left( \dfrac{-1}{a\sin \theta } \right)\] , as $\dfrac{d}{dx}(\cot \theta )=-\cos e{{c}^{2}}\theta $
On simplifying, we get
\[=\dfrac{-b}{a}\text{(}-\text{cose}{{\text{c}}^{2}}\theta )\left( \dfrac{-\cos ec\theta }{a} \right)\]
\[=\dfrac{-b}{{{a}^{2}}}\text{cose}{{\text{c}}^{3}}\theta \]
Again , we can see that \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] is a function of\[\theta \].
So , \[\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{d}{d\theta }\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right).\dfrac{d\theta }{dx}\]
Now , we will substitute the values of \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] and \[\dfrac{d\theta }{dx}\] in the expression of \[\dfrac{{{d}^{3}}y}{d{{x}^{3}}}\].
So , on substituting the values of \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] and \[\dfrac{d\theta }{dx}\] in the expression of \[\dfrac{{{d}^{3}}y}{d{{x}^{3}}}\], we get ,
\[\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{d}{d\theta }\left( \dfrac{-b}{{{a}^{2}}}\text{cose}{{\text{c}}^{3}}\theta \right).\left( \dfrac{-1}{a\sin \theta } \right)\]
\[=\dfrac{-b}{{{a}^{2}}}\left( 3\text{cose}{{\text{c}}^{2}}\theta \right).\left( -\text{cosec}\theta \cot \theta \right).\left( \dfrac{-1}{a\sin \theta } \right)\] as $\dfrac{d}{dx}(\operatorname{cosec}\theta )=-\cos ec\theta \cot \theta $
On simplifying, we get
\[=\dfrac{-3b}{{{a}^{3}}}\text{cose}{{\text{c}}^{4}}\theta \cot \theta \]
So , \[\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{-3b}{{{a}^{3}}}\text{cose}{{\text{c}}^{4}}\theta \cot \theta \]
So, the correct answer is “Option C”.
Note: A common mistake made in such question is writing \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\dfrac{{{d}^{2}}y}{d{{\theta }^{2}}}}{\dfrac{{{d}^{2}}x}{d{{\theta }^{2}}}}\] which is wrong.
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{d\theta }\left( \dfrac{dy}{dx} \right).\left( \dfrac{d\theta }{dx} \right)\]. Such mistakes should be avoided. These mistakes can lead to incorrect values and the student will end up getting a wrong answer.
Complete step by step answer:
We are given the expressions \[x=a\cos \theta \] and \[y=b\sin \theta \]. It can clearly be seen that \[x\] and \[y\]are in parametric form and \[\theta \] is the parameter.
Hence , in order to find the value of the derivative \[\dfrac{dy}{dx}\], first we have to differentiate \[x\] and \[y\]separately with respect to \[\theta \].
i.e. \[\dfrac{dy}{dx}=\dfrac{dy}{d\theta }\times \dfrac{d\theta }{dx}\]
Now, we will differentiate \[x\] and \[y\] separately with respect to \[\theta \].
On differentiating \[y\] with respect to \[\theta \], we get
\[\dfrac{dy}{d\theta }=\dfrac{d}{d\theta }\left( b\sin \theta \right)=b\cos \theta \]
And, on differentiating \[x\] with respect to \[\theta \], we get
\[\dfrac{dx}{d\theta }=\dfrac{d}{d\theta }\left( a\cos \theta \right)=-a\sin \theta \]
Now , we know inverse function theorem of differentiation says that if \[x=f(\theta )\] and \[\dfrac{dx}{d\theta }=x'\] then , \[\dfrac{d\theta }{dx}=\theta '=\dfrac{1}{x'}\] .
So , we can write \[\dfrac{d\theta }{dx}=\dfrac{1}{\dfrac{dx}{d\theta }}=\dfrac{1}{-a\sin \theta }\].
Now, we will substitute the values of \[\dfrac{dy}{d\theta }\] and \[\dfrac{d\theta }{dx}\] in the expression of \[\dfrac{dy}{dx}\].
So , on substituting the values of \[\dfrac{dy}{d\theta }\] and \[\dfrac{d\theta }{dx}\] in the expression of \[\dfrac{dy}{dx}\], we get \[\dfrac{dy}{dx}=\dfrac{b\cos \theta }{-a\sin \theta }=-\dfrac{b}{a}\cot \theta \]
Again , we can see that \[\dfrac{dy}{dx}\]is a function of \[\theta \].
So , we can say \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{d\theta }\left( \dfrac{dy}{dx} \right).\dfrac{d\theta }{dx}\]
Now , we will substitute the values of \[\dfrac{dy}{dx}\] and \[\dfrac{d\theta }{dx}\] in the expression of \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
So , on substituting the values of \[\dfrac{dy}{dx}\] and \[\dfrac{d\theta }{dx}\] in the expression of \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\], we get ,
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-b}{a}\text{(}-\text{cose}{{\text{c}}^{2}}\theta )\left( \dfrac{-1}{a\sin \theta } \right)\] , as $\dfrac{d}{dx}(\cot \theta )=-\cos e{{c}^{2}}\theta $
On simplifying, we get
\[=\dfrac{-b}{a}\text{(}-\text{cose}{{\text{c}}^{2}}\theta )\left( \dfrac{-\cos ec\theta }{a} \right)\]
\[=\dfrac{-b}{{{a}^{2}}}\text{cose}{{\text{c}}^{3}}\theta \]
Again , we can see that \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] is a function of\[\theta \].
So , \[\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{d}{d\theta }\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right).\dfrac{d\theta }{dx}\]
Now , we will substitute the values of \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] and \[\dfrac{d\theta }{dx}\] in the expression of \[\dfrac{{{d}^{3}}y}{d{{x}^{3}}}\].
So , on substituting the values of \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] and \[\dfrac{d\theta }{dx}\] in the expression of \[\dfrac{{{d}^{3}}y}{d{{x}^{3}}}\], we get ,
\[\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{d}{d\theta }\left( \dfrac{-b}{{{a}^{2}}}\text{cose}{{\text{c}}^{3}}\theta \right).\left( \dfrac{-1}{a\sin \theta } \right)\]
\[=\dfrac{-b}{{{a}^{2}}}\left( 3\text{cose}{{\text{c}}^{2}}\theta \right).\left( -\text{cosec}\theta \cot \theta \right).\left( \dfrac{-1}{a\sin \theta } \right)\] as $\dfrac{d}{dx}(\operatorname{cosec}\theta )=-\cos ec\theta \cot \theta $
On simplifying, we get
\[=\dfrac{-3b}{{{a}^{3}}}\text{cose}{{\text{c}}^{4}}\theta \cot \theta \]
So , \[\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{-3b}{{{a}^{3}}}\text{cose}{{\text{c}}^{4}}\theta \cot \theta \]
So, the correct answer is “Option C”.
Note: A common mistake made in such question is writing \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\dfrac{{{d}^{2}}y}{d{{\theta }^{2}}}}{\dfrac{{{d}^{2}}x}{d{{\theta }^{2}}}}\] which is wrong.
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{d\theta }\left( \dfrac{dy}{dx} \right).\left( \dfrac{d\theta }{dx} \right)\]. Such mistakes should be avoided. These mistakes can lead to incorrect values and the student will end up getting a wrong answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

