
If $x=a\cos \text{ }\!\!\theta\!\!\text{ }+b\sin \text{ }\!\!\theta\!\!\text{ }$ and $y=a\sin \text{ }\!\!\theta\!\!\text{ }-b\cos \text{ }\!\!\theta\!\!\text{ }$ then prove that${{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y=0$
Answer
590.7k+ views
Hint: Since we are given two equations:
$\begin{align}
& x=a\cos \text{ }\!\!\theta\!\!\text{ }+b\sin \text{ }\!\!\theta\!\!\text{ }......\text{(1)} \\
& y=a\sin \text{ }\!\!\theta\!\!\text{ }-b\cos \text{ }\!\!\theta\!\!\text{ }......\text{(2)} \\
\end{align}$
Differentiate both the equations with respect to $\text{ }\!\!\theta\!\!\text{ }$. We get the values of $\dfrac{dx}{d\theta }$ and $\dfrac{dy}{d\theta }$. Divide $\dfrac{dy}{d\theta }$ by $\dfrac{dx}{d\theta }$ to get the value of $\dfrac{dy}{dx}$. Now, differentiate $\dfrac{dy}{dx}$ with respect to x and get the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$. Substitute the values in the equation ${{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y$ and get the result.
Complete step by step answer:
We have the following two equations:
$\begin{align}
& x=a\cos \theta +b\sin \theta ......(1) \\
& y=a\sin \theta -b\cos \theta ......(2) \\
\end{align}$
Now, differentiation equation (1) and (2) with respect to $\theta $, we get:
$\begin{align}
& \dfrac{dx}{d\theta }=-a\sin \theta +b\cos \theta ......(3) \\
& \dfrac{dy}{d\theta }=a\cos \theta +b\sin \theta ......(4) \\
\end{align}$
\[\left[ \because \dfrac{d}{d\theta }\left( \sin \theta \right)=\cos \theta ;\dfrac{d}{d\theta }\left( \cos \theta \right)=-\sin \theta \right]\]
Now, we need to find the value of $\dfrac{dy}{dx}$. So, divide equation (4) by equation (3).
We get:
\[\dfrac{dy}{dx}=\dfrac{a\cos \theta \text{ }+b\sin \theta }{-a\sin \theta +b\cos \theta }\]
Taking minus common from the denominator, we can write:
\[\dfrac{dy}{dx}=-\dfrac{a\cos \theta \text{ }+b\sin \theta }{a\sin \theta -b\cos \theta }......(5)\]
Since from equation (1) and (2), we have:
$x=a\cos \theta +b\sin \theta $ and $y=a\sin \theta -b\cos \theta $
So, we can write equation (5) as:
\[\dfrac{dy}{dx}=-\dfrac{x}{y}......\text{(6)}\]
Now, to find the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$, differentiate equation (6) with respect to x.
By applying the identity: $\dfrac{d}{dx}\left( \dfrac{f(x)}{g(x)} \right)=\dfrac{\left( \dfrac{d}{dx}f(x) \right)g(x)-f(x)\left( \dfrac{d}{dx}g(x) \right)}{{{\left( g(x) \right)}^{2}}}$
We get:
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\left( \dfrac{\left( 1\times y \right)-\left( x\times \dfrac{dy}{dx} \right)}{{{y}^{2}}} \right) \\
& =-\left( \dfrac{y-x\dfrac{dy}{dx}}{{{y}^{2}}} \right)......(7)
\end{align}\]
Since we need to prove that: ${{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y=0$
LHS = ${{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y$
Substitute the values of $\dfrac{dy}{dx}$ and $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ in LHS, we get:
$\begin{align}
& \Rightarrow {{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y \\
& \Rightarrow {{y}^{2}}\left( -\dfrac{y-x\dfrac{dy}{dx}}{{{y}^{2}}} \right)-x\left( -\dfrac{x}{y} \right)+y \\
& \Rightarrow -\left( y-x\dfrac{dy}{dx} \right)+\dfrac{{{x}^{2}}}{y}+y \\
& \Rightarrow -y+x\left( -\dfrac{x}{y} \right)+\dfrac{{{x}^{2}}}{y}+y \\
& \Rightarrow -y-\dfrac{{{x}^{2}}}{y}+\dfrac{{{x}^{2}}}{y}+y \\
& \Rightarrow 0=RHS \\
\end{align}$
Hence, proved that ${{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y=0$
Note: Since x and y are given in terms of $\text{ }\!\!\theta\!\!\text{ }$, so differentiate them with respect to $\text{ }\!\!\theta\!\!\text{ }$. Do not divide the both equations and try to find $\dfrac{dy}{dx}$. That is a wrong method, because x and y do not depend on each other, they are dependent on $\text{ }\!\!\theta\!\!\text{ }$. Also, while double-differentiating, do not differentiate $\dfrac{dy}{d\theta }$ and $\dfrac{dx}{d\theta }$ with respect to $\text{ }\!\!\theta\!\!\text{ }$ again because it will give you the value of
${{d}^{2}}y$ and ${{d}^{2}}x$. But we require the value of $d{{x}^{2}}$. So, firstly get a relation between x and y and the get the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$.
$\begin{align}
& x=a\cos \text{ }\!\!\theta\!\!\text{ }+b\sin \text{ }\!\!\theta\!\!\text{ }......\text{(1)} \\
& y=a\sin \text{ }\!\!\theta\!\!\text{ }-b\cos \text{ }\!\!\theta\!\!\text{ }......\text{(2)} \\
\end{align}$
Differentiate both the equations with respect to $\text{ }\!\!\theta\!\!\text{ }$. We get the values of $\dfrac{dx}{d\theta }$ and $\dfrac{dy}{d\theta }$. Divide $\dfrac{dy}{d\theta }$ by $\dfrac{dx}{d\theta }$ to get the value of $\dfrac{dy}{dx}$. Now, differentiate $\dfrac{dy}{dx}$ with respect to x and get the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$. Substitute the values in the equation ${{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y$ and get the result.
Complete step by step answer:
We have the following two equations:
$\begin{align}
& x=a\cos \theta +b\sin \theta ......(1) \\
& y=a\sin \theta -b\cos \theta ......(2) \\
\end{align}$
Now, differentiation equation (1) and (2) with respect to $\theta $, we get:
$\begin{align}
& \dfrac{dx}{d\theta }=-a\sin \theta +b\cos \theta ......(3) \\
& \dfrac{dy}{d\theta }=a\cos \theta +b\sin \theta ......(4) \\
\end{align}$
\[\left[ \because \dfrac{d}{d\theta }\left( \sin \theta \right)=\cos \theta ;\dfrac{d}{d\theta }\left( \cos \theta \right)=-\sin \theta \right]\]
Now, we need to find the value of $\dfrac{dy}{dx}$. So, divide equation (4) by equation (3).
We get:
\[\dfrac{dy}{dx}=\dfrac{a\cos \theta \text{ }+b\sin \theta }{-a\sin \theta +b\cos \theta }\]
Taking minus common from the denominator, we can write:
\[\dfrac{dy}{dx}=-\dfrac{a\cos \theta \text{ }+b\sin \theta }{a\sin \theta -b\cos \theta }......(5)\]
Since from equation (1) and (2), we have:
$x=a\cos \theta +b\sin \theta $ and $y=a\sin \theta -b\cos \theta $
So, we can write equation (5) as:
\[\dfrac{dy}{dx}=-\dfrac{x}{y}......\text{(6)}\]
Now, to find the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$, differentiate equation (6) with respect to x.
By applying the identity: $\dfrac{d}{dx}\left( \dfrac{f(x)}{g(x)} \right)=\dfrac{\left( \dfrac{d}{dx}f(x) \right)g(x)-f(x)\left( \dfrac{d}{dx}g(x) \right)}{{{\left( g(x) \right)}^{2}}}$
We get:
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\left( \dfrac{\left( 1\times y \right)-\left( x\times \dfrac{dy}{dx} \right)}{{{y}^{2}}} \right) \\
& =-\left( \dfrac{y-x\dfrac{dy}{dx}}{{{y}^{2}}} \right)......(7)
\end{align}\]
Since we need to prove that: ${{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y=0$
LHS = ${{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y$
Substitute the values of $\dfrac{dy}{dx}$ and $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ in LHS, we get:
$\begin{align}
& \Rightarrow {{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y \\
& \Rightarrow {{y}^{2}}\left( -\dfrac{y-x\dfrac{dy}{dx}}{{{y}^{2}}} \right)-x\left( -\dfrac{x}{y} \right)+y \\
& \Rightarrow -\left( y-x\dfrac{dy}{dx} \right)+\dfrac{{{x}^{2}}}{y}+y \\
& \Rightarrow -y+x\left( -\dfrac{x}{y} \right)+\dfrac{{{x}^{2}}}{y}+y \\
& \Rightarrow -y-\dfrac{{{x}^{2}}}{y}+\dfrac{{{x}^{2}}}{y}+y \\
& \Rightarrow 0=RHS \\
\end{align}$
Hence, proved that ${{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y=0$
Note: Since x and y are given in terms of $\text{ }\!\!\theta\!\!\text{ }$, so differentiate them with respect to $\text{ }\!\!\theta\!\!\text{ }$. Do not divide the both equations and try to find $\dfrac{dy}{dx}$. That is a wrong method, because x and y do not depend on each other, they are dependent on $\text{ }\!\!\theta\!\!\text{ }$. Also, while double-differentiating, do not differentiate $\dfrac{dy}{d\theta }$ and $\dfrac{dx}{d\theta }$ with respect to $\text{ }\!\!\theta\!\!\text{ }$ again because it will give you the value of
${{d}^{2}}y$ and ${{d}^{2}}x$. But we require the value of $d{{x}^{2}}$. So, firstly get a relation between x and y and the get the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Draw the diagram showing the germination of pollen class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

