
If \[x=a{{\cos }^{3}}t\] and \[y=a{{\sin }^{3}}t\] then find the value of \[\dfrac{dy}{dx}\] after eliminating \[t\]
Answer
569.4k+ views
Hint: We solve this problem first by finding the value of \[\cos t,\sin t\] from the given two equations.
Then we use the standard identity of the trigonometric ratios to eliminate \[t\]
We have the standard identity of sine ratio and cosine ratio as
\[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]
Then we differentiate the equation with respect to \[x\] in order to get \[\dfrac{dy}{dx}\]
We use the simple formula of differentiation that is
\[\Rightarrow \dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
Complete step by step answer:
We are given that \[x=a{{\cos }^{3}}t\] and \[y=a{{\sin }^{3}}t\]
Now, let us take the first equation and try to find out the value of \[\cos t\] as
\[\begin{align}
& \Rightarrow x=a{{\cos }^{3}}t \\
& \Rightarrow {{\left( \cos t \right)}^{3}}=\dfrac{x}{a} \\
& \Rightarrow \cos t={{\left( \dfrac{x}{a} \right)}^{\dfrac{1}{3}}} \\
\end{align}\]
Now, let us take the second equation and try to find out the value of \[\sin t\] as follows
\[\begin{align}
& \Rightarrow y=a{{\sin }^{3}}t \\
& \Rightarrow {{\left( \sin t \right)}^{3}}=\dfrac{y}{a} \\
& \Rightarrow \sin t={{\left( \dfrac{y}{a} \right)}^{\dfrac{1}{3}}} \\
\end{align}\]
Now, let us use the trigonometric identity of sine ratio and cosine ratio
We know that the standard identity of sine ratio and cosine ratio as
\[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]
By using the above identity we get
\[\Rightarrow {{\cos }^{2}}t+{{\sin }^{2}}t=1\]
By substituting the required values in above equation we get
\[\Rightarrow {{\left[ {{\left( \dfrac{x}{a} \right)}^{\dfrac{1}{3}}} \right]}^{2}}+{{\left[ {{\left( \dfrac{y}{a} \right)}^{\dfrac{1}{3}}} \right]}^{2}}=1\]
We know that the standard formula of exponents that is
\[{{\left( {{a}^{b}} \right)}^{c}}={{a}^{b\times c}}\]
By using the this formula in above equation we get
\[\begin{align}
& \Rightarrow {{\left( \dfrac{x}{a} \right)}^{\dfrac{2}{3}}}+{{\left( \dfrac{y}{a} \right)}^{\dfrac{2}{3}}}=1 \\
& \Rightarrow {{x}^{\dfrac{2}{3}}}+{{y}^{\dfrac{2}{3}}}={{a}^{\dfrac{2}{3}}} \\
\end{align}\]
Now, let us differentiate the above equation on both sides with respect to \[x\] then we get
\[\Rightarrow \dfrac{d}{dx}\left( {{x}^{\dfrac{2}{3}}} \right)+\dfrac{d}{dx}\left( {{y}^{\dfrac{2}{3}}} \right)=\dfrac{d}{dx}\left( {{a}^{\dfrac{2}{3}}} \right)\]
We know that the simple formula of differentiation that is
\[\Rightarrow \dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
By using the above formula we get
\[\begin{align}
& \Rightarrow \dfrac{2}{3}{{x}^{\dfrac{2}{3}-1}}+\dfrac{2}{3}{{y}^{\dfrac{2}{3}-1}}\dfrac{dy}{dx}=0 \\
& \Rightarrow {{y}^{-\dfrac{1}{3}}}\dfrac{dy}{dx}=-{{x}^{-\dfrac{1}{3}}} \\
& \Rightarrow \dfrac{1}{{{y}^{\dfrac{1}{3}}}}\dfrac{dy}{dx}=-\dfrac{1}{{{x}^{\dfrac{1}{3}}}} \\
\end{align}\]
Now, by cross multiplying the terms in above equation we get
\[\Rightarrow \dfrac{dy}{dx}=-{{\left( \dfrac{y}{x} \right)}^{\dfrac{1}{3}}}\]
Therefore we can conclude that the value of \[\dfrac{dy}{dx}\] after eliminating \[t\] is
\[\therefore \dfrac{dy}{dx}=-{{\left( \dfrac{y}{x} \right)}^{\dfrac{1}{3}}}\]
Note: We can solve this problem by using the other method.
We are given that \[x=a{{\cos }^{3}}t\] and \[y=a{{\sin }^{3}}t\]
We have the standard formula of differentiation that is
\[\dfrac{dy}{dx}=\dfrac{\left( \dfrac{dy}{dt} \right)}{\left( \dfrac{dx}{dt} \right)}\]
By using the above formula we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{\left( \dfrac{d}{dt}\left( a{{\sin }^{3}}t \right) \right)}{\left( \dfrac{d}{dt}\left( a{{\cos }^{3}}t \right) \right)}\]
We know that the formulas of differentiation that is
\[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
\[\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)\]
\[\dfrac{d}{dx}\left( \sin x \right)=\cos x\]
\[\dfrac{d}{dx}\left( \cos x \right)=-\sin x\]
By using the above two formula in the \[\dfrac{dy}{dx}\] we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{3a{{\sin }^{2}}t\cos t}{-3a{{\cos }^{2}}t\sin t} \\
& \Rightarrow \dfrac{dy}{dx}=-\tan x......equation(i) \\
\end{align}\]
We are given that \[x=a{{\cos }^{3}}t\] and \[y=a{{\sin }^{3}}t\]
By dividing the value of \[y\] with \[x\] then we get
\[\begin{align}
& \Rightarrow \dfrac{y}{x}=\dfrac{a{{\sin }^{3}}t}{a{{\cos }^{3}}t} \\
& \Rightarrow {{\left( \tan t \right)}^{3}}=\dfrac{y}{x} \\
& \Rightarrow \tan t={{\left( \dfrac{y}{x} \right)}^{\dfrac{1}{3}}} \\
\end{align}\]
By substituting this value in equation (i) we get
\[\Rightarrow \dfrac{dy}{dx}=-{{\left( \dfrac{y}{x} \right)}^{\dfrac{1}{3}}}\]
Therefore we can conclude that the value of \[\dfrac{dy}{dx}\] after eliminating \[t\] is
\[\therefore \dfrac{dy}{dx}=-{{\left( \dfrac{y}{x} \right)}^{\dfrac{1}{3}}}\]
Then we use the standard identity of the trigonometric ratios to eliminate \[t\]
We have the standard identity of sine ratio and cosine ratio as
\[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]
Then we differentiate the equation with respect to \[x\] in order to get \[\dfrac{dy}{dx}\]
We use the simple formula of differentiation that is
\[\Rightarrow \dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
Complete step by step answer:
We are given that \[x=a{{\cos }^{3}}t\] and \[y=a{{\sin }^{3}}t\]
Now, let us take the first equation and try to find out the value of \[\cos t\] as
\[\begin{align}
& \Rightarrow x=a{{\cos }^{3}}t \\
& \Rightarrow {{\left( \cos t \right)}^{3}}=\dfrac{x}{a} \\
& \Rightarrow \cos t={{\left( \dfrac{x}{a} \right)}^{\dfrac{1}{3}}} \\
\end{align}\]
Now, let us take the second equation and try to find out the value of \[\sin t\] as follows
\[\begin{align}
& \Rightarrow y=a{{\sin }^{3}}t \\
& \Rightarrow {{\left( \sin t \right)}^{3}}=\dfrac{y}{a} \\
& \Rightarrow \sin t={{\left( \dfrac{y}{a} \right)}^{\dfrac{1}{3}}} \\
\end{align}\]
Now, let us use the trigonometric identity of sine ratio and cosine ratio
We know that the standard identity of sine ratio and cosine ratio as
\[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]
By using the above identity we get
\[\Rightarrow {{\cos }^{2}}t+{{\sin }^{2}}t=1\]
By substituting the required values in above equation we get
\[\Rightarrow {{\left[ {{\left( \dfrac{x}{a} \right)}^{\dfrac{1}{3}}} \right]}^{2}}+{{\left[ {{\left( \dfrac{y}{a} \right)}^{\dfrac{1}{3}}} \right]}^{2}}=1\]
We know that the standard formula of exponents that is
\[{{\left( {{a}^{b}} \right)}^{c}}={{a}^{b\times c}}\]
By using the this formula in above equation we get
\[\begin{align}
& \Rightarrow {{\left( \dfrac{x}{a} \right)}^{\dfrac{2}{3}}}+{{\left( \dfrac{y}{a} \right)}^{\dfrac{2}{3}}}=1 \\
& \Rightarrow {{x}^{\dfrac{2}{3}}}+{{y}^{\dfrac{2}{3}}}={{a}^{\dfrac{2}{3}}} \\
\end{align}\]
Now, let us differentiate the above equation on both sides with respect to \[x\] then we get
\[\Rightarrow \dfrac{d}{dx}\left( {{x}^{\dfrac{2}{3}}} \right)+\dfrac{d}{dx}\left( {{y}^{\dfrac{2}{3}}} \right)=\dfrac{d}{dx}\left( {{a}^{\dfrac{2}{3}}} \right)\]
We know that the simple formula of differentiation that is
\[\Rightarrow \dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
By using the above formula we get
\[\begin{align}
& \Rightarrow \dfrac{2}{3}{{x}^{\dfrac{2}{3}-1}}+\dfrac{2}{3}{{y}^{\dfrac{2}{3}-1}}\dfrac{dy}{dx}=0 \\
& \Rightarrow {{y}^{-\dfrac{1}{3}}}\dfrac{dy}{dx}=-{{x}^{-\dfrac{1}{3}}} \\
& \Rightarrow \dfrac{1}{{{y}^{\dfrac{1}{3}}}}\dfrac{dy}{dx}=-\dfrac{1}{{{x}^{\dfrac{1}{3}}}} \\
\end{align}\]
Now, by cross multiplying the terms in above equation we get
\[\Rightarrow \dfrac{dy}{dx}=-{{\left( \dfrac{y}{x} \right)}^{\dfrac{1}{3}}}\]
Therefore we can conclude that the value of \[\dfrac{dy}{dx}\] after eliminating \[t\] is
\[\therefore \dfrac{dy}{dx}=-{{\left( \dfrac{y}{x} \right)}^{\dfrac{1}{3}}}\]
Note: We can solve this problem by using the other method.
We are given that \[x=a{{\cos }^{3}}t\] and \[y=a{{\sin }^{3}}t\]
We have the standard formula of differentiation that is
\[\dfrac{dy}{dx}=\dfrac{\left( \dfrac{dy}{dt} \right)}{\left( \dfrac{dx}{dt} \right)}\]
By using the above formula we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{\left( \dfrac{d}{dt}\left( a{{\sin }^{3}}t \right) \right)}{\left( \dfrac{d}{dt}\left( a{{\cos }^{3}}t \right) \right)}\]
We know that the formulas of differentiation that is
\[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]
\[\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)\]
\[\dfrac{d}{dx}\left( \sin x \right)=\cos x\]
\[\dfrac{d}{dx}\left( \cos x \right)=-\sin x\]
By using the above two formula in the \[\dfrac{dy}{dx}\] we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{3a{{\sin }^{2}}t\cos t}{-3a{{\cos }^{2}}t\sin t} \\
& \Rightarrow \dfrac{dy}{dx}=-\tan x......equation(i) \\
\end{align}\]
We are given that \[x=a{{\cos }^{3}}t\] and \[y=a{{\sin }^{3}}t\]
By dividing the value of \[y\] with \[x\] then we get
\[\begin{align}
& \Rightarrow \dfrac{y}{x}=\dfrac{a{{\sin }^{3}}t}{a{{\cos }^{3}}t} \\
& \Rightarrow {{\left( \tan t \right)}^{3}}=\dfrac{y}{x} \\
& \Rightarrow \tan t={{\left( \dfrac{y}{x} \right)}^{\dfrac{1}{3}}} \\
\end{align}\]
By substituting this value in equation (i) we get
\[\Rightarrow \dfrac{dy}{dx}=-{{\left( \dfrac{y}{x} \right)}^{\dfrac{1}{3}}}\]
Therefore we can conclude that the value of \[\dfrac{dy}{dx}\] after eliminating \[t\] is
\[\therefore \dfrac{dy}{dx}=-{{\left( \dfrac{y}{x} \right)}^{\dfrac{1}{3}}}\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

