
If \[x=30{}^\circ \] verify that \[\sin x=\sqrt{\dfrac{1-\cos 2x}{2}}\].
Answer
585.6k+ views
Hint: The left-hand side and right-hand side are calculated by putting the value of x. The right-hand side can be obtained by using the value of x.
Formulas used:
The value of \[\sin 30{}^\circ =\dfrac{1}{2}\] and the value of \[\cos 60{}^\circ =\dfrac{1}{2}\].
Complete step-by-step answer:
First step will be considering \[\sin x\] as the left-hand side and put the value of x.
The right-hand side be \[\sqrt{\dfrac{1-\cos 2x}{2}}\] and put the value of x, and obtain the result.
The verification can be obtained as,
\[\begin{align}
& \sin x=\sqrt{\dfrac{1-\cos 2x}{2}} \\
& L.HS.=\sin x \\
& L.HS.=\sin 30{}^\circ =\dfrac{1}{2} \\
& R.H.S=\sqrt{\dfrac{1-\cos 2x}{2}} \\
& R.H.S=\sqrt{\dfrac{1-\cos \left( 2\cdot 30 \right){}^\circ }{2}} \\
& R.H.S=\sqrt{\dfrac{1-\cos 60{}^\circ }{2}} \\
& R.H.S=\sqrt{\dfrac{1-\dfrac{1}{2}}{2}} \\
& R.H.S=\sqrt{\dfrac{\dfrac{1}{2}}{2}} \\
& R.H.S=\sqrt{\dfrac{1}{4}} \\
& R.H.S=\dfrac{1}{2} \\
\end{align}\]
\[Therefore,\text{ }L.H.S=R.H.S\text{ }\left[ verified \right]\].
Thus, the above expression is verified.
Note: The standard identities of trigonometric ratio have some special value for standard angle. The value of the trigonometric ratios is different for different angles.
Formulas used:
The value of \[\sin 30{}^\circ =\dfrac{1}{2}\] and the value of \[\cos 60{}^\circ =\dfrac{1}{2}\].
Complete step-by-step answer:
First step will be considering \[\sin x\] as the left-hand side and put the value of x.
The right-hand side be \[\sqrt{\dfrac{1-\cos 2x}{2}}\] and put the value of x, and obtain the result.
The verification can be obtained as,
\[\begin{align}
& \sin x=\sqrt{\dfrac{1-\cos 2x}{2}} \\
& L.HS.=\sin x \\
& L.HS.=\sin 30{}^\circ =\dfrac{1}{2} \\
& R.H.S=\sqrt{\dfrac{1-\cos 2x}{2}} \\
& R.H.S=\sqrt{\dfrac{1-\cos \left( 2\cdot 30 \right){}^\circ }{2}} \\
& R.H.S=\sqrt{\dfrac{1-\cos 60{}^\circ }{2}} \\
& R.H.S=\sqrt{\dfrac{1-\dfrac{1}{2}}{2}} \\
& R.H.S=\sqrt{\dfrac{\dfrac{1}{2}}{2}} \\
& R.H.S=\sqrt{\dfrac{1}{4}} \\
& R.H.S=\dfrac{1}{2} \\
\end{align}\]
\[Therefore,\text{ }L.H.S=R.H.S\text{ }\left[ verified \right]\].
Thus, the above expression is verified.
Note: The standard identities of trigonometric ratio have some special value for standard angle. The value of the trigonometric ratios is different for different angles.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

