
If $ x = \sum\limits_{n = 0}^n {{a^n}} $ , $ y = \sum\limits_{n = 0}^n {{b^n}} $ , $ z = \sum\limits_{n = 0}^n {{c^n}} $ where $ a $ , $ b $ and $ c $ are in AP and $ \left| a \right| < 1 $ , $ \left| b \right| < 1 $ and $ \left| c \right| < 1 $ then $ x $ , $ y $ , $ z $ are in
A.HP
B.Arithmetic-Geometric progression
C.AP
D.GP
Answer
588.3k+ views
Hint: Since, $ x $ is in geometric mean the formula to find the infinite geometric mean is $ \dfrac{a}{{1 - r}} $ . Where, $ a $ is the first term of the series and $ r $ is the common multiple for the series. Find the geometric mean for all the values for $ x $ , $ y $ , $ z $ . Then find the relation for the $ x $ , $ y $ and $ z $ .
Complete step-by-step answer:
The value of $ x $ is equal to $ \sum\limits_{n = 0}^\infty {{a^n}} $ .
The value of $ y $ is equal to $ \sum\limits_{n = 0}^\infty {{b^n}} $ .
The value of $ z $ is equal to $ \sum\limits_{n = 0}^\infty {{c^n}} $ .
Since, we know that $ x = \sum\limits_{n = 0}^\infty {{a^n}} $ .
So, we can see that $ x $ is in the geometric mean so the formula to find the geometric mean is,
$ \sum\limits_{n = 0}^\infty {{a^n}} = \dfrac{a}{{1 - r}} $
Where, $ a $ is the first term of the series and $ r $ is the common multiple for the series.
So, for $ \sum\limits_{n = 0}^\infty {{a^n}} $ , $ a $ is 1 and $ r $ is $ a $ .
On substituting the values, we get,
$ \sum\limits_{n = 0}^\infty {{a^n}} = \dfrac{1}{{1 - a}} $
We know that the value of x is,
$ \begin{array}{c}
x = \sum\limits_{n = 0}^\infty {{a^n}} \\
= \dfrac{1}{{1 - a}}
\end{array} $ .......(1)
In the case of $ y $ . We can see that $ y $ is in the geometric mean so the formula to find the geometric mean is,
$ \sum\limits_{n = 1}^\infty {{a^n}} = \dfrac{a}{{1 - r}} $
Where, $ a $ is the first term of the series and $ r $ is the common multiple for the series.
So for $ \sum\limits_{n = 0}^\infty {{b^n}} $ , $ a $ is 1 and $ r $ is $ a $ .
On substituting the values, we get,
$ \sum\limits_{n = 0}^\infty {{b^n}} = \dfrac{1}{{1 - b}} $
We know that the value of y is,
$ \begin{array}{c}
y = \sum\limits_{n = 1}^\infty {{b^n}} \\
= \dfrac{1}{{1 - b}}
\end{array} $ ......(2)
In the case of $ z $ . So, we can see that $ z $ is in the geometric mean so the formula to find the geometric mean is,
$ \sum\limits_{n = 1}^\infty {{a^n}} = \dfrac{a}{{1 - r}} $
Where $ a $ is the first term of the series and $ r $ is the common multiple for the series.
So, for $ \sum\limits_{n = 0}^\infty {{c^n}} $ , $ a $ is 1 and $ r $ is $ a $ .
On substituting the values, we get,
$ \sum\limits_{n = 0}^\infty {{c^n}} = \dfrac{1}{{1 - c}} $
We know that the value of z is,
$ \begin{array}{c}
z = \sum\limits_{n = 0}^\infty {{c^n}} \\
= \dfrac{1}{{1 - c}}
\end{array} $ .........(3)
We can rewrite the equation (1) as,
$ \begin{array}{l}
x = \dfrac{1}{{1 - a}}\\
\dfrac{1}{x} = 1 - a\\
a = 1 - \dfrac{1}{x}
\end{array} $
Hence, we get $ a $ is $ \dfrac{{x - 1}}{x} $ .
We can rewrite the equation (2) as,
$ \begin{array}{l}
y = \dfrac{1}{{1 - b}}\\
\dfrac{1}{y} = 1 - b\\
b = 1 - \dfrac{1}{y}
\end{array} $
Hence, we get $ b $ is $ \dfrac{{y - 1}}{y} $ .
We can rewrite the equation (3) as,
$ \begin{array}{l}
z = \dfrac{1}{{1 - c}}\\
\dfrac{1}{z} = 1 - c\\
c = 1 - \dfrac{1}{z}
\end{array} $
Hence, we get $ c $ is $ \dfrac{{z - 1}}{z} $ .
Since we know that $ a $ , $ b $ , $ c $ are in AP.
The formula for $ a $ , $ b $ and $ c $ will be,
$ ab = a + c $
On substituting the values of $ a $ , $ b $ and $ c $ we get,
$ \begin{array}{c}
2\left( {\dfrac{{y - 1}}{y}} \right) = \left( {\dfrac{{x - 1}}{x}} \right) + \left( {\dfrac{{z - 1}}{z}} \right)\\
2 - \dfrac{2}{y} = 1 - \dfrac{1}{x} + 1 - \dfrac{1}{y}
\end{array} $
By rearranging the terms, we get that,
$ \begin{array}{c}
- \dfrac{2}{y} = - \dfrac{1}{x} - \dfrac{1}{z}\\
\dfrac{2}{y} = \dfrac{1}{x} + \dfrac{1}{z}
\end{array} $
Hence $ \dfrac{1}{x} $ , $ \dfrac{1}{y} $ and $ \dfrac{1}{z} $ are in AP.
This implies that $ x $ , $ y $ and $ z $ are in HP.
So, the correct answer is “Option A”.
Note: If the sequence terms are like $ \dfrac{1}{x} $ , $ \dfrac{1}{y} $ , $ \dfrac{1}{z} $ are in arithmetic mean then $ x $ , $ y $ and $ z $ will be in harmonic mean. The relation between arithmetic mean, harmonic mean and geometric mean is given by $ \left( {{\rm{AM}}} \right) \times \left( {{\rm{HM}}} \right) = {\left( {{\rm{GM}}} \right)^2} $ .
Complete step-by-step answer:
The value of $ x $ is equal to $ \sum\limits_{n = 0}^\infty {{a^n}} $ .
The value of $ y $ is equal to $ \sum\limits_{n = 0}^\infty {{b^n}} $ .
The value of $ z $ is equal to $ \sum\limits_{n = 0}^\infty {{c^n}} $ .
Since, we know that $ x = \sum\limits_{n = 0}^\infty {{a^n}} $ .
So, we can see that $ x $ is in the geometric mean so the formula to find the geometric mean is,
$ \sum\limits_{n = 0}^\infty {{a^n}} = \dfrac{a}{{1 - r}} $
Where, $ a $ is the first term of the series and $ r $ is the common multiple for the series.
So, for $ \sum\limits_{n = 0}^\infty {{a^n}} $ , $ a $ is 1 and $ r $ is $ a $ .
On substituting the values, we get,
$ \sum\limits_{n = 0}^\infty {{a^n}} = \dfrac{1}{{1 - a}} $
We know that the value of x is,
$ \begin{array}{c}
x = \sum\limits_{n = 0}^\infty {{a^n}} \\
= \dfrac{1}{{1 - a}}
\end{array} $ .......(1)
In the case of $ y $ . We can see that $ y $ is in the geometric mean so the formula to find the geometric mean is,
$ \sum\limits_{n = 1}^\infty {{a^n}} = \dfrac{a}{{1 - r}} $
Where, $ a $ is the first term of the series and $ r $ is the common multiple for the series.
So for $ \sum\limits_{n = 0}^\infty {{b^n}} $ , $ a $ is 1 and $ r $ is $ a $ .
On substituting the values, we get,
$ \sum\limits_{n = 0}^\infty {{b^n}} = \dfrac{1}{{1 - b}} $
We know that the value of y is,
$ \begin{array}{c}
y = \sum\limits_{n = 1}^\infty {{b^n}} \\
= \dfrac{1}{{1 - b}}
\end{array} $ ......(2)
In the case of $ z $ . So, we can see that $ z $ is in the geometric mean so the formula to find the geometric mean is,
$ \sum\limits_{n = 1}^\infty {{a^n}} = \dfrac{a}{{1 - r}} $
Where $ a $ is the first term of the series and $ r $ is the common multiple for the series.
So, for $ \sum\limits_{n = 0}^\infty {{c^n}} $ , $ a $ is 1 and $ r $ is $ a $ .
On substituting the values, we get,
$ \sum\limits_{n = 0}^\infty {{c^n}} = \dfrac{1}{{1 - c}} $
We know that the value of z is,
$ \begin{array}{c}
z = \sum\limits_{n = 0}^\infty {{c^n}} \\
= \dfrac{1}{{1 - c}}
\end{array} $ .........(3)
We can rewrite the equation (1) as,
$ \begin{array}{l}
x = \dfrac{1}{{1 - a}}\\
\dfrac{1}{x} = 1 - a\\
a = 1 - \dfrac{1}{x}
\end{array} $
Hence, we get $ a $ is $ \dfrac{{x - 1}}{x} $ .
We can rewrite the equation (2) as,
$ \begin{array}{l}
y = \dfrac{1}{{1 - b}}\\
\dfrac{1}{y} = 1 - b\\
b = 1 - \dfrac{1}{y}
\end{array} $
Hence, we get $ b $ is $ \dfrac{{y - 1}}{y} $ .
We can rewrite the equation (3) as,
$ \begin{array}{l}
z = \dfrac{1}{{1 - c}}\\
\dfrac{1}{z} = 1 - c\\
c = 1 - \dfrac{1}{z}
\end{array} $
Hence, we get $ c $ is $ \dfrac{{z - 1}}{z} $ .
Since we know that $ a $ , $ b $ , $ c $ are in AP.
The formula for $ a $ , $ b $ and $ c $ will be,
$ ab = a + c $
On substituting the values of $ a $ , $ b $ and $ c $ we get,
$ \begin{array}{c}
2\left( {\dfrac{{y - 1}}{y}} \right) = \left( {\dfrac{{x - 1}}{x}} \right) + \left( {\dfrac{{z - 1}}{z}} \right)\\
2 - \dfrac{2}{y} = 1 - \dfrac{1}{x} + 1 - \dfrac{1}{y}
\end{array} $
By rearranging the terms, we get that,
$ \begin{array}{c}
- \dfrac{2}{y} = - \dfrac{1}{x} - \dfrac{1}{z}\\
\dfrac{2}{y} = \dfrac{1}{x} + \dfrac{1}{z}
\end{array} $
Hence $ \dfrac{1}{x} $ , $ \dfrac{1}{y} $ and $ \dfrac{1}{z} $ are in AP.
This implies that $ x $ , $ y $ and $ z $ are in HP.
So, the correct answer is “Option A”.
Note: If the sequence terms are like $ \dfrac{1}{x} $ , $ \dfrac{1}{y} $ , $ \dfrac{1}{z} $ are in arithmetic mean then $ x $ , $ y $ and $ z $ will be in harmonic mean. The relation between arithmetic mean, harmonic mean and geometric mean is given by $ \left( {{\rm{AM}}} \right) \times \left( {{\rm{HM}}} \right) = {\left( {{\rm{GM}}} \right)^2} $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

