
If $ x = \sum\limits_{n = 0}^n {{a^n}} $ , $ y = \sum\limits_{n = 0}^n {{b^n}} $ , $ z = \sum\limits_{n = 0}^n {{c^n}} $ where $ a $ , $ b $ and $ c $ are in AP and $ \left| a \right| < 1 $ , $ \left| b \right| < 1 $ and $ \left| c \right| < 1 $ then $ x $ , $ y $ , $ z $ are in
A.HP
B.Arithmetic-Geometric progression
C.AP
D.GP
Answer
573.9k+ views
Hint: Since, $ x $ is in geometric mean the formula to find the infinite geometric mean is $ \dfrac{a}{{1 - r}} $ . Where, $ a $ is the first term of the series and $ r $ is the common multiple for the series. Find the geometric mean for all the values for $ x $ , $ y $ , $ z $ . Then find the relation for the $ x $ , $ y $ and $ z $ .
Complete step-by-step answer:
The value of $ x $ is equal to $ \sum\limits_{n = 0}^\infty {{a^n}} $ .
The value of $ y $ is equal to $ \sum\limits_{n = 0}^\infty {{b^n}} $ .
The value of $ z $ is equal to $ \sum\limits_{n = 0}^\infty {{c^n}} $ .
Since, we know that $ x = \sum\limits_{n = 0}^\infty {{a^n}} $ .
So, we can see that $ x $ is in the geometric mean so the formula to find the geometric mean is,
$ \sum\limits_{n = 0}^\infty {{a^n}} = \dfrac{a}{{1 - r}} $
Where, $ a $ is the first term of the series and $ r $ is the common multiple for the series.
So, for $ \sum\limits_{n = 0}^\infty {{a^n}} $ , $ a $ is 1 and $ r $ is $ a $ .
On substituting the values, we get,
$ \sum\limits_{n = 0}^\infty {{a^n}} = \dfrac{1}{{1 - a}} $
We know that the value of x is,
$ \begin{array}{c}
x = \sum\limits_{n = 0}^\infty {{a^n}} \\
= \dfrac{1}{{1 - a}}
\end{array} $ .......(1)
In the case of $ y $ . We can see that $ y $ is in the geometric mean so the formula to find the geometric mean is,
$ \sum\limits_{n = 1}^\infty {{a^n}} = \dfrac{a}{{1 - r}} $
Where, $ a $ is the first term of the series and $ r $ is the common multiple for the series.
So for $ \sum\limits_{n = 0}^\infty {{b^n}} $ , $ a $ is 1 and $ r $ is $ a $ .
On substituting the values, we get,
$ \sum\limits_{n = 0}^\infty {{b^n}} = \dfrac{1}{{1 - b}} $
We know that the value of y is,
$ \begin{array}{c}
y = \sum\limits_{n = 1}^\infty {{b^n}} \\
= \dfrac{1}{{1 - b}}
\end{array} $ ......(2)
In the case of $ z $ . So, we can see that $ z $ is in the geometric mean so the formula to find the geometric mean is,
$ \sum\limits_{n = 1}^\infty {{a^n}} = \dfrac{a}{{1 - r}} $
Where $ a $ is the first term of the series and $ r $ is the common multiple for the series.
So, for $ \sum\limits_{n = 0}^\infty {{c^n}} $ , $ a $ is 1 and $ r $ is $ a $ .
On substituting the values, we get,
$ \sum\limits_{n = 0}^\infty {{c^n}} = \dfrac{1}{{1 - c}} $
We know that the value of z is,
$ \begin{array}{c}
z = \sum\limits_{n = 0}^\infty {{c^n}} \\
= \dfrac{1}{{1 - c}}
\end{array} $ .........(3)
We can rewrite the equation (1) as,
$ \begin{array}{l}
x = \dfrac{1}{{1 - a}}\\
\dfrac{1}{x} = 1 - a\\
a = 1 - \dfrac{1}{x}
\end{array} $
Hence, we get $ a $ is $ \dfrac{{x - 1}}{x} $ .
We can rewrite the equation (2) as,
$ \begin{array}{l}
y = \dfrac{1}{{1 - b}}\\
\dfrac{1}{y} = 1 - b\\
b = 1 - \dfrac{1}{y}
\end{array} $
Hence, we get $ b $ is $ \dfrac{{y - 1}}{y} $ .
We can rewrite the equation (3) as,
$ \begin{array}{l}
z = \dfrac{1}{{1 - c}}\\
\dfrac{1}{z} = 1 - c\\
c = 1 - \dfrac{1}{z}
\end{array} $
Hence, we get $ c $ is $ \dfrac{{z - 1}}{z} $ .
Since we know that $ a $ , $ b $ , $ c $ are in AP.
The formula for $ a $ , $ b $ and $ c $ will be,
$ ab = a + c $
On substituting the values of $ a $ , $ b $ and $ c $ we get,
$ \begin{array}{c}
2\left( {\dfrac{{y - 1}}{y}} \right) = \left( {\dfrac{{x - 1}}{x}} \right) + \left( {\dfrac{{z - 1}}{z}} \right)\\
2 - \dfrac{2}{y} = 1 - \dfrac{1}{x} + 1 - \dfrac{1}{y}
\end{array} $
By rearranging the terms, we get that,
$ \begin{array}{c}
- \dfrac{2}{y} = - \dfrac{1}{x} - \dfrac{1}{z}\\
\dfrac{2}{y} = \dfrac{1}{x} + \dfrac{1}{z}
\end{array} $
Hence $ \dfrac{1}{x} $ , $ \dfrac{1}{y} $ and $ \dfrac{1}{z} $ are in AP.
This implies that $ x $ , $ y $ and $ z $ are in HP.
So, the correct answer is “Option A”.
Note: If the sequence terms are like $ \dfrac{1}{x} $ , $ \dfrac{1}{y} $ , $ \dfrac{1}{z} $ are in arithmetic mean then $ x $ , $ y $ and $ z $ will be in harmonic mean. The relation between arithmetic mean, harmonic mean and geometric mean is given by $ \left( {{\rm{AM}}} \right) \times \left( {{\rm{HM}}} \right) = {\left( {{\rm{GM}}} \right)^2} $ .
Complete step-by-step answer:
The value of $ x $ is equal to $ \sum\limits_{n = 0}^\infty {{a^n}} $ .
The value of $ y $ is equal to $ \sum\limits_{n = 0}^\infty {{b^n}} $ .
The value of $ z $ is equal to $ \sum\limits_{n = 0}^\infty {{c^n}} $ .
Since, we know that $ x = \sum\limits_{n = 0}^\infty {{a^n}} $ .
So, we can see that $ x $ is in the geometric mean so the formula to find the geometric mean is,
$ \sum\limits_{n = 0}^\infty {{a^n}} = \dfrac{a}{{1 - r}} $
Where, $ a $ is the first term of the series and $ r $ is the common multiple for the series.
So, for $ \sum\limits_{n = 0}^\infty {{a^n}} $ , $ a $ is 1 and $ r $ is $ a $ .
On substituting the values, we get,
$ \sum\limits_{n = 0}^\infty {{a^n}} = \dfrac{1}{{1 - a}} $
We know that the value of x is,
$ \begin{array}{c}
x = \sum\limits_{n = 0}^\infty {{a^n}} \\
= \dfrac{1}{{1 - a}}
\end{array} $ .......(1)
In the case of $ y $ . We can see that $ y $ is in the geometric mean so the formula to find the geometric mean is,
$ \sum\limits_{n = 1}^\infty {{a^n}} = \dfrac{a}{{1 - r}} $
Where, $ a $ is the first term of the series and $ r $ is the common multiple for the series.
So for $ \sum\limits_{n = 0}^\infty {{b^n}} $ , $ a $ is 1 and $ r $ is $ a $ .
On substituting the values, we get,
$ \sum\limits_{n = 0}^\infty {{b^n}} = \dfrac{1}{{1 - b}} $
We know that the value of y is,
$ \begin{array}{c}
y = \sum\limits_{n = 1}^\infty {{b^n}} \\
= \dfrac{1}{{1 - b}}
\end{array} $ ......(2)
In the case of $ z $ . So, we can see that $ z $ is in the geometric mean so the formula to find the geometric mean is,
$ \sum\limits_{n = 1}^\infty {{a^n}} = \dfrac{a}{{1 - r}} $
Where $ a $ is the first term of the series and $ r $ is the common multiple for the series.
So, for $ \sum\limits_{n = 0}^\infty {{c^n}} $ , $ a $ is 1 and $ r $ is $ a $ .
On substituting the values, we get,
$ \sum\limits_{n = 0}^\infty {{c^n}} = \dfrac{1}{{1 - c}} $
We know that the value of z is,
$ \begin{array}{c}
z = \sum\limits_{n = 0}^\infty {{c^n}} \\
= \dfrac{1}{{1 - c}}
\end{array} $ .........(3)
We can rewrite the equation (1) as,
$ \begin{array}{l}
x = \dfrac{1}{{1 - a}}\\
\dfrac{1}{x} = 1 - a\\
a = 1 - \dfrac{1}{x}
\end{array} $
Hence, we get $ a $ is $ \dfrac{{x - 1}}{x} $ .
We can rewrite the equation (2) as,
$ \begin{array}{l}
y = \dfrac{1}{{1 - b}}\\
\dfrac{1}{y} = 1 - b\\
b = 1 - \dfrac{1}{y}
\end{array} $
Hence, we get $ b $ is $ \dfrac{{y - 1}}{y} $ .
We can rewrite the equation (3) as,
$ \begin{array}{l}
z = \dfrac{1}{{1 - c}}\\
\dfrac{1}{z} = 1 - c\\
c = 1 - \dfrac{1}{z}
\end{array} $
Hence, we get $ c $ is $ \dfrac{{z - 1}}{z} $ .
Since we know that $ a $ , $ b $ , $ c $ are in AP.
The formula for $ a $ , $ b $ and $ c $ will be,
$ ab = a + c $
On substituting the values of $ a $ , $ b $ and $ c $ we get,
$ \begin{array}{c}
2\left( {\dfrac{{y - 1}}{y}} \right) = \left( {\dfrac{{x - 1}}{x}} \right) + \left( {\dfrac{{z - 1}}{z}} \right)\\
2 - \dfrac{2}{y} = 1 - \dfrac{1}{x} + 1 - \dfrac{1}{y}
\end{array} $
By rearranging the terms, we get that,
$ \begin{array}{c}
- \dfrac{2}{y} = - \dfrac{1}{x} - \dfrac{1}{z}\\
\dfrac{2}{y} = \dfrac{1}{x} + \dfrac{1}{z}
\end{array} $
Hence $ \dfrac{1}{x} $ , $ \dfrac{1}{y} $ and $ \dfrac{1}{z} $ are in AP.
This implies that $ x $ , $ y $ and $ z $ are in HP.
So, the correct answer is “Option A”.
Note: If the sequence terms are like $ \dfrac{1}{x} $ , $ \dfrac{1}{y} $ , $ \dfrac{1}{z} $ are in arithmetic mean then $ x $ , $ y $ and $ z $ will be in harmonic mean. The relation between arithmetic mean, harmonic mean and geometric mean is given by $ \left( {{\rm{AM}}} \right) \times \left( {{\rm{HM}}} \right) = {\left( {{\rm{GM}}} \right)^2} $ .
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

A triangle ABC is drawn to circumscribe a circle of class 10 maths CBSE

