
If \[x = \sin \dfrac{{2\pi }}{7} + \sin \dfrac{{4\pi }}{7} + \sin \dfrac{{8\pi }}{7}\] and \[y = \cos \dfrac{{2\pi }}{7} + \cos \dfrac{{4\pi }}{7} + \cos \dfrac{{8\pi }}{7}\] then \[{x^2} + {y^2}\] equals
A. 1
B. 2
C. 3
D. 4
Answer
579.3k+ views
Hint: We have been given the value of \[x\] and \[y\] in the question.
We will first find the numerical values of these two variables and use them to find \[{x^2} + {y^2}\].
We will solve for \[y\] by taking \[a = \dfrac{{2\pi }}{7}\] and simplify to find the values of both the variables.
on using these two values to find \[{x^2} + {y^2}\] we get the required answer.
Formula used: \[2\cos A\sin B = \sin (A + B) - \sin (A - B)\]
\[2\sin A\cos B = \sin (A + B) + \sin (A - B)\]
\[\cos (A - B) = \sin A\sin B + \cos A\cos B\]
\[{(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\]
Trigonometric identity, \[{\sin ^2}x + {\cos ^2}x = 1\]
Complete step-by-step answer:
We first take \[y = \cos \dfrac{{2\pi }}{7} + \cos \dfrac{{4\pi }}{7} + \cos \dfrac{{8\pi }}{7} \to (1)\]
Let us consider\[a = \dfrac{{2\pi }}{7}\].
\[ \Rightarrow 7a = 2\pi \].
Substituting \[7a = 2\pi \] in \[(1)\]and we get,
\[ \Rightarrow y = \cos a + \cos 2a + \cos 4a\]
Now we multiply and divide \[2\sin \dfrac{a}{2}\] on the right-hand side.
\[ \Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( {2\sin \dfrac{a}{2}\cos a + 2\sin \dfrac{a}{2}\cos 2a + 2\sin \dfrac{a}{2}\cos 4a} \right)\]
Since \[2\cos A\sin B = \sin (A + B) - \sin (A - B)\]we can write the above as
\[ \Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( {\sin \left( {a + \dfrac{a}{2}} \right) - \sin \left( {a - \dfrac{a}{2}} \right) + \sin \left( {2a + \dfrac{a}{2}} \right) - \sin \left( {2a - \dfrac{a}{2}} \right) + \sin \left( {4a + \dfrac{a}{2}} \right) - \sin \left( {4a - \dfrac{a}{2}} \right)} \right)\]
On simplification we get,
\[ \Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( {\sin \left( {\dfrac{{3a}}{2}} \right) - \sin \left( {\dfrac{a}{2}} \right) + \sin \left( {\dfrac{{5a}}{2}} \right) - \sin \left( {\dfrac{{3a}}{2}} \right) + \sin \left( {\dfrac{{9a}}{2}} \right) - \sin \left( {\dfrac{{7a}}{2}} \right)} \right)\]
Cancelling the like terms with opposite signs and substituting \[7a = 2\pi \] in the last term.
\[ \Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( { - \sin \left( {\dfrac{a}{2}} \right) + \sin \left( {\dfrac{{5a}}{2}} \right) + \sin \left( {\dfrac{{9a}}{2}} \right) - \sin \left( {\dfrac{{2\pi }}{2}} \right)} \right)\]
We know that \[{{sin n\pi = 0 for}}\,{\text{all}}\,{\text{n}}\], hence \[\sin \left( {\dfrac{{2\pi }}{2}} \right) = 0\]
\[ \Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( { - \sin \left( {\dfrac{a}{2}} \right) + \sin \left( {\dfrac{{5a}}{2}} \right) + \sin \left( {\dfrac{{9a}}{2}} \right)} \right) \to (2)\]
Again we use the formula, \[2\sin A\cos B = \sin (A + B) + \sin (A - B)\] then we can take \[A = \dfrac{{7a}}{2}\] and \[B = a\]
That is we can write, \[\sin \left( {\dfrac{{5a}}{2}} \right) + \sin \left( {\dfrac{{9a}}{2}} \right) = \sin \left( {\dfrac{{7a}}{2} - a} \right) + \sin \left( {\dfrac{{7a}}{2} + a} \right) = 2\sin \left( {\dfrac{{7a}}{2}} \right)\cos (a)\]
Substituting this in equation (2)
\[ \Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( { - \sin \left( {\dfrac{a}{2}} \right) + 2\sin \left( {\dfrac{{7a}}{2}} \right)\cos (a)} \right)\]
Again, we can substitute\[7a = 2\pi \]
\[ \Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( { - \sin \left( {\dfrac{a}{2}} \right) + \sin 2\pi \cos a} \right)\]
\[{{sin n\pi = 0 for}}\,{\text{all}}\,{\text{n}}\], \[\sin 2\pi \cos a = 0 \times \cos a = 0\]
\[ \Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}} \times - \sin \left( {\dfrac{a}{2}} \right)\]
Cancelling \[\dfrac{1}{{\sin \dfrac{a}{2}}} \times - \sin \left( {\dfrac{a}{2}} \right)\] we can get the value of y.
\[ \Rightarrow y = - \dfrac{1}{2}\]
Now to find \[x\] we need to find \[\sin \dfrac{{2\pi }}{7} + \sin \dfrac{{4\pi }}{7} + \sin \dfrac{{8\pi }}{7} \to (3)\].
By taking \[7a = 2\pi \] and solving for \[\left( 1 \right)\] and \[\left( 3 \right)\] as follows,
\[{(\sin a + \sin 2a + \sin 4a)^2} + {(\cos a + \cos 2a + \cos 4a)^2} \to (4)\] will give the value of \[x\].
By using \[{(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\] we can write (4) as,
\[\begin{gathered}
\Rightarrow {\sin ^2}a + {\sin ^2}2a + {\sin ^2}4a + {\cos ^2}a + {\cos ^2}2a + {\cos ^2}4a + 2(\sin a\sin 2a + \sin 2a\sin 4a + \sin 4a\sin a + \cos a\cos 2a \\
+ \cos 2a\cos 4a + \cos 4a\cos a) \\
\end{gathered} \]
By using the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\]
\[({\sin ^2}a + {\cos ^2}a) + ({\sin ^2}2a + {\cos ^2}2a) + ({\sin ^2}4a + {\cos ^2}4a) \Rightarrow 1 + 1 + 1 \to (5)\]
Now, by using (5)
\[ \Rightarrow 1 + 1 + 1 + 2(\sin a\sin 2a + \sin 2a\sin 4a + \sin 4a\sin a + \cos a\cos 2a + \cos 2a\cos 4a + \cos 4a\cos a)\]
On adding we get,
\[ \Rightarrow 3 + 2(\sin a\sin 2a + \sin 2a\sin 4a + \sin 4a\sin a + \cos a\cos 2a + \cos 2a\cos 4a + \cos 4a\cos a)\]
By using \[\cos (A - B) = \sin A\sin B + \cos A\cos B\] we can further do as follows,
\[ \Rightarrow 3 + 2((\sin a\sin 2a + \cos a\cos 2a) + (\sin 2a\sin 4a + \cos 2a\cos 4a) + (\sin 4a\sin a + \cos 4a\cos a))\] Using the formula and we get,
\[ \Rightarrow 3 + 2(\cos (2a - a) + \cos (4a - 2a) + \cos (4a - a))\]
On subtracting the bracket terms and we get,
\[ \Rightarrow 3 + 2(\cos (a) + \cos (2a) + \cos (3a))\]
Since \[{{cos(2\pi - \theta ) = cos(\theta )cos(2\pi ) + sin(\theta )sin(2\pi )}}\] and \[\cos 2\pi = 1,\sin 2\pi = 0\]
We can write \[cos(2\pi - \theta ) = \cos \theta \]
Using this in \[\cos 3a = \cos (2\pi - 4a) = \cos 4a\]
\[ \Rightarrow 3 + 2(\cos (a) + \cos (2a) + \cos (4a))\]
Since we already have \[y = \cos (a) + \cos (2a) + \cos (4a) = - \dfrac{1}{2}\]
\[ \Rightarrow 3 + 2 \times \left( { - \dfrac{1}{2}} \right)\]
On cancelling the term and we get.
\[ \Rightarrow 3 - 1\]
Let us subtracting we get,
\[ \Rightarrow 2\]
Now equation \[\left( 4 \right)\] can be written as,
\[ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} + {(\cos a + \cos 2a + \cos 4a)^2} = 2\]
We can again substitute\[y = \cos (a) + \cos (2a) + \cos (4a) = - \dfrac{1}{2}\] in the above and we arrive at,
\[ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} + {\left( { - \dfrac{1}{2}} \right)^2} = 2\]
On squaring the term and we get,
\[ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} + \left( {\dfrac{1}{4}} \right) = 2\]
Taking the fraction term as RHS and change into the negative sign we get
\[ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} = 2 - \left( {\dfrac{1}{4}} \right)\]
Taking LCM as RHS and we get,
\[ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} = \dfrac{{8 - 1}}{4}\]
Let us subtract the numerator term on RHS we get,
\[ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} = \dfrac{7}{4}\]
By taking square root on both sides we get,
\[ \Rightarrow \sin a + \sin 2a + \sin 4a = \dfrac{{\sqrt 7 }}{2}\]
This is because; the square of \[2\] is \[4\].
From the above calculations, we have obtained the values as
\[x = \sin \dfrac{{2\pi }}{7} + \sin \dfrac{{4\pi }}{7} + \sin \dfrac{{8\pi }}{7} = \dfrac{{\sqrt 7 }}{2}\]
\[y = \cos \dfrac{{2\pi }}{7} + \cos \dfrac{{4\pi }}{7} + \cos \dfrac{{8\pi }}{7} = - \dfrac{1}{2}\]
To find \[{x^2} + {y^2}\] we now use the above values,
\[ \Rightarrow {\left( {\dfrac{{\sqrt 7 }}{2}} \right)^2} + {\left( { - \dfrac{1}{2}} \right)^2}\]
On squaring the term and we get,
\[ \Rightarrow \left( {\dfrac{7}{4}} \right) + \left( {\dfrac{1}{4}} \right)\]
On adding the term we get,
\[ \Rightarrow \dfrac{8}{4}\]
Let us divide the term and we get,
\[ \Rightarrow 2\]
On simplifying this we arrive at the answer as \[2\].
The correct option for this question is B.
Note: We need to be aware of the trigonometric conversions and formulas to solve this problem.
It is important for us to know that \[{{sin n\pi = 0 for}}\,{\text{all}}\,{\text{n}}\] whereas \[{{cos n\pi = 1when}}\,{\text{n}}\,{\text{is}}\,{\text{even}}\] and \[{{cos n\pi = - 1when}}\,{\text{n}}\,{\text{is}}\,{\text{odd}}\].
When using formulas such as
\[2\cos A\sin B = \sin (A + B) - \sin (A - B)\]
\[2\sin A\cos B = \sin (A + B) + \sin (A - B)\]
\[\cos (A - B) = \sin A\sin B + \cos A\cos B\]
We need to be careful in choosing the values of A and B accordingly to get the required answer.
We will first find the numerical values of these two variables and use them to find \[{x^2} + {y^2}\].
We will solve for \[y\] by taking \[a = \dfrac{{2\pi }}{7}\] and simplify to find the values of both the variables.
on using these two values to find \[{x^2} + {y^2}\] we get the required answer.
Formula used: \[2\cos A\sin B = \sin (A + B) - \sin (A - B)\]
\[2\sin A\cos B = \sin (A + B) + \sin (A - B)\]
\[\cos (A - B) = \sin A\sin B + \cos A\cos B\]
\[{(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\]
Trigonometric identity, \[{\sin ^2}x + {\cos ^2}x = 1\]
Complete step-by-step answer:
We first take \[y = \cos \dfrac{{2\pi }}{7} + \cos \dfrac{{4\pi }}{7} + \cos \dfrac{{8\pi }}{7} \to (1)\]
Let us consider\[a = \dfrac{{2\pi }}{7}\].
\[ \Rightarrow 7a = 2\pi \].
Substituting \[7a = 2\pi \] in \[(1)\]and we get,
\[ \Rightarrow y = \cos a + \cos 2a + \cos 4a\]
Now we multiply and divide \[2\sin \dfrac{a}{2}\] on the right-hand side.
\[ \Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( {2\sin \dfrac{a}{2}\cos a + 2\sin \dfrac{a}{2}\cos 2a + 2\sin \dfrac{a}{2}\cos 4a} \right)\]
Since \[2\cos A\sin B = \sin (A + B) - \sin (A - B)\]we can write the above as
\[ \Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( {\sin \left( {a + \dfrac{a}{2}} \right) - \sin \left( {a - \dfrac{a}{2}} \right) + \sin \left( {2a + \dfrac{a}{2}} \right) - \sin \left( {2a - \dfrac{a}{2}} \right) + \sin \left( {4a + \dfrac{a}{2}} \right) - \sin \left( {4a - \dfrac{a}{2}} \right)} \right)\]
On simplification we get,
\[ \Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( {\sin \left( {\dfrac{{3a}}{2}} \right) - \sin \left( {\dfrac{a}{2}} \right) + \sin \left( {\dfrac{{5a}}{2}} \right) - \sin \left( {\dfrac{{3a}}{2}} \right) + \sin \left( {\dfrac{{9a}}{2}} \right) - \sin \left( {\dfrac{{7a}}{2}} \right)} \right)\]
Cancelling the like terms with opposite signs and substituting \[7a = 2\pi \] in the last term.
\[ \Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( { - \sin \left( {\dfrac{a}{2}} \right) + \sin \left( {\dfrac{{5a}}{2}} \right) + \sin \left( {\dfrac{{9a}}{2}} \right) - \sin \left( {\dfrac{{2\pi }}{2}} \right)} \right)\]
We know that \[{{sin n\pi = 0 for}}\,{\text{all}}\,{\text{n}}\], hence \[\sin \left( {\dfrac{{2\pi }}{2}} \right) = 0\]
\[ \Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( { - \sin \left( {\dfrac{a}{2}} \right) + \sin \left( {\dfrac{{5a}}{2}} \right) + \sin \left( {\dfrac{{9a}}{2}} \right)} \right) \to (2)\]
Again we use the formula, \[2\sin A\cos B = \sin (A + B) + \sin (A - B)\] then we can take \[A = \dfrac{{7a}}{2}\] and \[B = a\]
That is we can write, \[\sin \left( {\dfrac{{5a}}{2}} \right) + \sin \left( {\dfrac{{9a}}{2}} \right) = \sin \left( {\dfrac{{7a}}{2} - a} \right) + \sin \left( {\dfrac{{7a}}{2} + a} \right) = 2\sin \left( {\dfrac{{7a}}{2}} \right)\cos (a)\]
Substituting this in equation (2)
\[ \Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( { - \sin \left( {\dfrac{a}{2}} \right) + 2\sin \left( {\dfrac{{7a}}{2}} \right)\cos (a)} \right)\]
Again, we can substitute\[7a = 2\pi \]
\[ \Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( { - \sin \left( {\dfrac{a}{2}} \right) + \sin 2\pi \cos a} \right)\]
\[{{sin n\pi = 0 for}}\,{\text{all}}\,{\text{n}}\], \[\sin 2\pi \cos a = 0 \times \cos a = 0\]
\[ \Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}} \times - \sin \left( {\dfrac{a}{2}} \right)\]
Cancelling \[\dfrac{1}{{\sin \dfrac{a}{2}}} \times - \sin \left( {\dfrac{a}{2}} \right)\] we can get the value of y.
\[ \Rightarrow y = - \dfrac{1}{2}\]
Now to find \[x\] we need to find \[\sin \dfrac{{2\pi }}{7} + \sin \dfrac{{4\pi }}{7} + \sin \dfrac{{8\pi }}{7} \to (3)\].
By taking \[7a = 2\pi \] and solving for \[\left( 1 \right)\] and \[\left( 3 \right)\] as follows,
\[{(\sin a + \sin 2a + \sin 4a)^2} + {(\cos a + \cos 2a + \cos 4a)^2} \to (4)\] will give the value of \[x\].
By using \[{(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\] we can write (4) as,
\[\begin{gathered}
\Rightarrow {\sin ^2}a + {\sin ^2}2a + {\sin ^2}4a + {\cos ^2}a + {\cos ^2}2a + {\cos ^2}4a + 2(\sin a\sin 2a + \sin 2a\sin 4a + \sin 4a\sin a + \cos a\cos 2a \\
+ \cos 2a\cos 4a + \cos 4a\cos a) \\
\end{gathered} \]
By using the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\]
\[({\sin ^2}a + {\cos ^2}a) + ({\sin ^2}2a + {\cos ^2}2a) + ({\sin ^2}4a + {\cos ^2}4a) \Rightarrow 1 + 1 + 1 \to (5)\]
Now, by using (5)
\[ \Rightarrow 1 + 1 + 1 + 2(\sin a\sin 2a + \sin 2a\sin 4a + \sin 4a\sin a + \cos a\cos 2a + \cos 2a\cos 4a + \cos 4a\cos a)\]
On adding we get,
\[ \Rightarrow 3 + 2(\sin a\sin 2a + \sin 2a\sin 4a + \sin 4a\sin a + \cos a\cos 2a + \cos 2a\cos 4a + \cos 4a\cos a)\]
By using \[\cos (A - B) = \sin A\sin B + \cos A\cos B\] we can further do as follows,
\[ \Rightarrow 3 + 2((\sin a\sin 2a + \cos a\cos 2a) + (\sin 2a\sin 4a + \cos 2a\cos 4a) + (\sin 4a\sin a + \cos 4a\cos a))\] Using the formula and we get,
\[ \Rightarrow 3 + 2(\cos (2a - a) + \cos (4a - 2a) + \cos (4a - a))\]
On subtracting the bracket terms and we get,
\[ \Rightarrow 3 + 2(\cos (a) + \cos (2a) + \cos (3a))\]
Since \[{{cos(2\pi - \theta ) = cos(\theta )cos(2\pi ) + sin(\theta )sin(2\pi )}}\] and \[\cos 2\pi = 1,\sin 2\pi = 0\]
We can write \[cos(2\pi - \theta ) = \cos \theta \]
Using this in \[\cos 3a = \cos (2\pi - 4a) = \cos 4a\]
\[ \Rightarrow 3 + 2(\cos (a) + \cos (2a) + \cos (4a))\]
Since we already have \[y = \cos (a) + \cos (2a) + \cos (4a) = - \dfrac{1}{2}\]
\[ \Rightarrow 3 + 2 \times \left( { - \dfrac{1}{2}} \right)\]
On cancelling the term and we get.
\[ \Rightarrow 3 - 1\]
Let us subtracting we get,
\[ \Rightarrow 2\]
Now equation \[\left( 4 \right)\] can be written as,
\[ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} + {(\cos a + \cos 2a + \cos 4a)^2} = 2\]
We can again substitute\[y = \cos (a) + \cos (2a) + \cos (4a) = - \dfrac{1}{2}\] in the above and we arrive at,
\[ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} + {\left( { - \dfrac{1}{2}} \right)^2} = 2\]
On squaring the term and we get,
\[ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} + \left( {\dfrac{1}{4}} \right) = 2\]
Taking the fraction term as RHS and change into the negative sign we get
\[ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} = 2 - \left( {\dfrac{1}{4}} \right)\]
Taking LCM as RHS and we get,
\[ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} = \dfrac{{8 - 1}}{4}\]
Let us subtract the numerator term on RHS we get,
\[ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} = \dfrac{7}{4}\]
By taking square root on both sides we get,
\[ \Rightarrow \sin a + \sin 2a + \sin 4a = \dfrac{{\sqrt 7 }}{2}\]
This is because; the square of \[2\] is \[4\].
From the above calculations, we have obtained the values as
\[x = \sin \dfrac{{2\pi }}{7} + \sin \dfrac{{4\pi }}{7} + \sin \dfrac{{8\pi }}{7} = \dfrac{{\sqrt 7 }}{2}\]
\[y = \cos \dfrac{{2\pi }}{7} + \cos \dfrac{{4\pi }}{7} + \cos \dfrac{{8\pi }}{7} = - \dfrac{1}{2}\]
To find \[{x^2} + {y^2}\] we now use the above values,
\[ \Rightarrow {\left( {\dfrac{{\sqrt 7 }}{2}} \right)^2} + {\left( { - \dfrac{1}{2}} \right)^2}\]
On squaring the term and we get,
\[ \Rightarrow \left( {\dfrac{7}{4}} \right) + \left( {\dfrac{1}{4}} \right)\]
On adding the term we get,
\[ \Rightarrow \dfrac{8}{4}\]
Let us divide the term and we get,
\[ \Rightarrow 2\]
On simplifying this we arrive at the answer as \[2\].
The correct option for this question is B.
Note: We need to be aware of the trigonometric conversions and formulas to solve this problem.
It is important for us to know that \[{{sin n\pi = 0 for}}\,{\text{all}}\,{\text{n}}\] whereas \[{{cos n\pi = 1when}}\,{\text{n}}\,{\text{is}}\,{\text{even}}\] and \[{{cos n\pi = - 1when}}\,{\text{n}}\,{\text{is}}\,{\text{odd}}\].
When using formulas such as
\[2\cos A\sin B = \sin (A + B) - \sin (A - B)\]
\[2\sin A\cos B = \sin (A + B) + \sin (A - B)\]
\[\cos (A - B) = \sin A\sin B + \cos A\cos B\]
We need to be careful in choosing the values of A and B accordingly to get the required answer.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

