
If $x = {\sin ^{ - 1}}\left( {3t - 4{t^3}} \right)$ and $y = {\cos ^{ - 1}}\left( {\sqrt {1 - {t^2}} } \right)$ then $\dfrac{{dy}}{{dx}}$ is equal to?
Answer
496.8k+ views
Hint: To solve this type of questions, the best approach is to always remember the standard trigonometric identities. Notice here that the expression given for $x = {\sin ^{ - 1}}\left( {3t - 4{t^3}} \right)$ can be simplified using the standard formula of $\sin 3\theta $ and the expression given $y = {\cos ^{ - 1}}\left( {\sqrt {1 - {t^2}} } \right)$ can be reduced to a simpler form by using standard identity ${\sin ^2}\theta + {\cos ^{^2}}\theta = 1$ . So basic algebraic rules and trigonometric identities
have to be kept in mind while solving the given problem.
Complete step by step answer:
To simplify the question, let us assume that $t = \sin \theta $ . Now, put the value of $t$ in the expression for
$x$ , we get;
$ \Rightarrow x = {\sin ^{ - 1}}\left( {3t - 4{t^3}} \right)$
$ \Rightarrow x = \left( {3\sin \theta - 4{{\sin }^3}\theta } \right)$
By identity, $\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta $ the above expression can be reduced to;
$ \Rightarrow x = {\sin ^{ - 1}}\left( {\sin 3\theta } \right)$
By identity, ${\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta $ therefore we get;
$ \Rightarrow x = 3\theta $
Now, let us try to simplify the given expression for $y$ by replacing $t = \sin \theta $ , we get;
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\sqrt {1 - {t^2}} } \right)$
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\sqrt {1 - {{\sin }^2}\theta } } \right)$
By identity, ${\sin ^2}\theta + {\cos ^2}\theta = 1$ we know $\sqrt {1 - {{\sin }^2}\theta } = \cos \theta $ , we get;
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\cos \theta } \right)$
$ \Rightarrow y = \theta $
Now, we will calculate the derivative of $x$ and $y$;
Differentiating $x$ with respect to (w.r.t.) $\theta $ , we get;
$\because x = 3\theta $
$\therefore \dfrac{{dx}}{{d\theta }} = 3\dfrac{d}{{d\theta }}\left( \theta \right)$
By the differentiation formula, $\dfrac{d}{{dx}}\left( x \right) = 1$, we get;
$ \Rightarrow \dfrac{{dx}}{{d\theta }} = 3$ $......\left( 1 \right)$
Now Differentiating $y$ with respect to (w.r.t.) $\theta $ , we get;
$\because y = \theta $
$\therefore \dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}\left( \theta \right)$
$ \Rightarrow \dfrac{{dy}}{{d\theta }} = 1$ $......\left( 2 \right)$
Now, according to the given question we have to calculate $\dfrac{{dy}}{{dx}}$ therefore dividing equation $\left( 2 \right)$ by equation $\left( 1 \right)$, we get;
$ \Rightarrow \dfrac{{\left( {\dfrac{{dy}}{{d\theta }}} \right)}}{{\left( {\dfrac{{dx}}{{d\theta }}} \right)}} = \dfrac{1}{3}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{3}$
Therefore, the value of $\dfrac{{dy}}{{dx}}$ is $\dfrac{1}{3}$.
This question can also be solved like this:
Let $t = \sin \theta $
So, $\theta = {\sin ^{ - 1}}\left( t \right)$
By identity, $\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta $
$ \Rightarrow x = {\sin ^{ - 1}}\left( {3t - 4{t^3}} \right)$
$ \Rightarrow x = {\sin ^{ - 1}}\sin \left( {3\theta } \right)$
$ \Rightarrow x = 3\theta $
$ \Rightarrow x = 3{\sin ^{ - 1}}t$ $\left( {\because \theta = {{\sin }^{ - 1}}t} \right)$
By identity , ${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow \cos \theta = \pm \sqrt {1 - {{\sin }^2}\theta } $
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\sqrt {1 - {t^2}} } \right)$
$ \Rightarrow y = {\cos ^{ - 1}}\cos \left( \theta \right)$
$ \Rightarrow y = \theta $
$ \Rightarrow y = {\sin ^{ - 1}}t$
To calculate $\dfrac{{dy}}{{dx}}$ , we should calculate $\dfrac{{dy}}{{dt}}$ and $\dfrac{{dx}}{{dt}}$.
$ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {{{\sin }^{ - 1}}t} \right)$
By standard formula; $\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
Therefore $\dfrac{{dy}}{{dt}} = \dfrac{1}{{\sqrt {1 - {t^2}} }}$
Now, we will calculate $\dfrac{{dx}}{{dt}}$
$ \Rightarrow \dfrac{{dx}}{{dt}} = 3\dfrac{d}{{dt}}\left( {{{\sin }^{ - 1}}t} \right)$
Therefore $\dfrac{{dx}}{{dt}} = \dfrac{3}{{\sqrt {1 - {t^2}} }}$
Now , calculating $\dfrac{{dy}}{{dx}}$ by putting the values of $\dfrac{{dy}}{{dt}}$ and $\dfrac{{dx}}{{dt}}$ ;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{1}{{\sqrt {1 - {t^2}} }}}}{{\dfrac{3}{{\sqrt {1 - {t^2}} }}}}$
On further calculation;
Therefore the value of $\dfrac{{dy}}{{dx}}$ is given as ;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{3}$
Note:
The given question deals with basic simplification of trigonometric functions by using some of the standard trigonometric identities such as; $\sin 3 \theta= 3 \sin \theta - 4 \sin^3 \theta$ and $\sin^2 \theta + \cos^2 \theta = 1$.
Besides this, simple algebraic rules and identities are also of significant use in such types of problems.
have to be kept in mind while solving the given problem.
Complete step by step answer:
To simplify the question, let us assume that $t = \sin \theta $ . Now, put the value of $t$ in the expression for
$x$ , we get;
$ \Rightarrow x = {\sin ^{ - 1}}\left( {3t - 4{t^3}} \right)$
$ \Rightarrow x = \left( {3\sin \theta - 4{{\sin }^3}\theta } \right)$
By identity, $\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta $ the above expression can be reduced to;
$ \Rightarrow x = {\sin ^{ - 1}}\left( {\sin 3\theta } \right)$
By identity, ${\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta $ therefore we get;
$ \Rightarrow x = 3\theta $
Now, let us try to simplify the given expression for $y$ by replacing $t = \sin \theta $ , we get;
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\sqrt {1 - {t^2}} } \right)$
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\sqrt {1 - {{\sin }^2}\theta } } \right)$
By identity, ${\sin ^2}\theta + {\cos ^2}\theta = 1$ we know $\sqrt {1 - {{\sin }^2}\theta } = \cos \theta $ , we get;
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\cos \theta } \right)$
$ \Rightarrow y = \theta $
Now, we will calculate the derivative of $x$ and $y$;
Differentiating $x$ with respect to (w.r.t.) $\theta $ , we get;
$\because x = 3\theta $
$\therefore \dfrac{{dx}}{{d\theta }} = 3\dfrac{d}{{d\theta }}\left( \theta \right)$
By the differentiation formula, $\dfrac{d}{{dx}}\left( x \right) = 1$, we get;
$ \Rightarrow \dfrac{{dx}}{{d\theta }} = 3$ $......\left( 1 \right)$
Now Differentiating $y$ with respect to (w.r.t.) $\theta $ , we get;
$\because y = \theta $
$\therefore \dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}\left( \theta \right)$
$ \Rightarrow \dfrac{{dy}}{{d\theta }} = 1$ $......\left( 2 \right)$
Now, according to the given question we have to calculate $\dfrac{{dy}}{{dx}}$ therefore dividing equation $\left( 2 \right)$ by equation $\left( 1 \right)$, we get;
$ \Rightarrow \dfrac{{\left( {\dfrac{{dy}}{{d\theta }}} \right)}}{{\left( {\dfrac{{dx}}{{d\theta }}} \right)}} = \dfrac{1}{3}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{3}$
Therefore, the value of $\dfrac{{dy}}{{dx}}$ is $\dfrac{1}{3}$.
This question can also be solved like this:
Let $t = \sin \theta $
So, $\theta = {\sin ^{ - 1}}\left( t \right)$
By identity, $\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta $
$ \Rightarrow x = {\sin ^{ - 1}}\left( {3t - 4{t^3}} \right)$
$ \Rightarrow x = {\sin ^{ - 1}}\sin \left( {3\theta } \right)$
$ \Rightarrow x = 3\theta $
$ \Rightarrow x = 3{\sin ^{ - 1}}t$ $\left( {\because \theta = {{\sin }^{ - 1}}t} \right)$
By identity , ${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow \cos \theta = \pm \sqrt {1 - {{\sin }^2}\theta } $
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\sqrt {1 - {t^2}} } \right)$
$ \Rightarrow y = {\cos ^{ - 1}}\cos \left( \theta \right)$
$ \Rightarrow y = \theta $
$ \Rightarrow y = {\sin ^{ - 1}}t$
To calculate $\dfrac{{dy}}{{dx}}$ , we should calculate $\dfrac{{dy}}{{dt}}$ and $\dfrac{{dx}}{{dt}}$.
$ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {{{\sin }^{ - 1}}t} \right)$
By standard formula; $\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
Therefore $\dfrac{{dy}}{{dt}} = \dfrac{1}{{\sqrt {1 - {t^2}} }}$
Now, we will calculate $\dfrac{{dx}}{{dt}}$
$ \Rightarrow \dfrac{{dx}}{{dt}} = 3\dfrac{d}{{dt}}\left( {{{\sin }^{ - 1}}t} \right)$
Therefore $\dfrac{{dx}}{{dt}} = \dfrac{3}{{\sqrt {1 - {t^2}} }}$
Now , calculating $\dfrac{{dy}}{{dx}}$ by putting the values of $\dfrac{{dy}}{{dt}}$ and $\dfrac{{dx}}{{dt}}$ ;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{1}{{\sqrt {1 - {t^2}} }}}}{{\dfrac{3}{{\sqrt {1 - {t^2}} }}}}$
On further calculation;
Therefore the value of $\dfrac{{dy}}{{dx}}$ is given as ;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{3}$
Note:
The given question deals with basic simplification of trigonometric functions by using some of the standard trigonometric identities such as; $\sin 3 \theta= 3 \sin \theta - 4 \sin^3 \theta$ and $\sin^2 \theta + \cos^2 \theta = 1$.
Besides this, simple algebraic rules and identities are also of significant use in such types of problems.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

