 Questions & Answers    Question Answers

# If $X = \left\{ {{4^n} - 3n - 1:n \in N} \right\}$and $Y = \left\{ {9\left( {n - 1} \right):n \in N} \right\}$, then $X \cup Y$ is equal to A. $X$B. $Y$C. $N$D. None of the above  Answer Verified
Hint: Convert the set of elements of $X$ in terms of the set of elements of $Y$. While converting the set of elements use Binomial Theorem for expanding the terms. So, use this concept to reach the solution of the problem.

Complete step-by-step answer:
Given set $Y = \left\{ {9\left( {n - 1} \right):n \in N} \right\}$ and
Set $X$ contains elements of the form
$\Rightarrow {4^n} - 3n - 1$
Which can be written as
$\Rightarrow {\left( {1 + 3} \right)^n} - 3n - 1$
Opening the terms in the bracket by using the formula ${\left( {1 + x} \right)^n} = {}^n{C_0} + x{}^n{C_1} + {x^2}{}^n{C_2} + ....................... + {x^{n - 1}}{}^n{C_{n - 1}} + {x^n}{}^n{C_n}$ we have,
$\Rightarrow 1 + 3{}^n{C_1} + {3^2}{}^n{C_2} + .............. + {3^{n - 1}}{}^n{C_{n - 1}} + {3^n}{}^n{C_n} - 3n - 1 \\ \Rightarrow 1 + 3n + {3^2}{}^n{C_2} + .................. + {3^{n - 1}}{}^n{C_{n - 1}} + {3^n}{}^n{C_n} - 3n - 1 \\$
Cancelling the common terms, we get
$\Rightarrow {3^2}{}^n{C_2} + .................. + {3^{n - 1}}{}^n{C_{n - 1}} + {3^n}{}^n{C_n}$
Taking ${3^2}$as common, we get
$\Rightarrow {3^2}\left( {{}^n{C_2} + ................ + {3^{n - 3}}{}^n{C_{n - 1}} + {3^{n - 2}}{}^n{C_n}} \right) \\ \Rightarrow 9\left( {{}^n{C_2} + ................ + {3^{n - 3}}{}^n{C_{n - 1}} + {3^{n - 2}}{}^n{C_n}} \right) \\$
Clearly, set $X$ has natural numbers which are multiples of 9 (not all) and the set $Y$has all the multiples of 9.
Therefore, $X \subset Y$. So $X \cup Y$ is equal to the set of elements in $Y$.
Thus, the correct option is B. $Y$

Note: In the given problem the set $X \cup Y$ has the elements of both elements of the sets$X$ and $Y$. But the elements of set $Y$ contain the elements of set $X$ i.e., $X \subset Y$ from the solution.
Bookmark added to your notes.
View Notes
SUM OF N TERMS  P-N Junction  Hydrazine - N₂H₄  Nitrogen Trioxide - N₂O₃  Difference Between Right and Left Lung  Difference Between Left and Right Ventricle  Difference Between Left and Right Kidney  Difference Between Left Kidney and Right Kidney  Fleming's Left Hand Rule and Right Hand Rule  Multiple of 7  