Answer
Verified
484.5k+ views
Hint: Convert the set of elements of \[X\] in terms of the set of elements of \[Y\]. While converting the set of elements use Binomial Theorem for expanding the terms. So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
Given set \[Y = \left\{ {9\left( {n - 1} \right):n \in N} \right\}\] and
Set \[X\] contains elements of the form
\[ \Rightarrow {4^n} - 3n - 1\]
Which can be written as
\[ \Rightarrow {\left( {1 + 3} \right)^n} - 3n - 1\]
Opening the terms in the bracket by using the formula \[{\left( {1 + x} \right)^n} = {}^n{C_0} + x{}^n{C_1} + {x^2}{}^n{C_2} + ....................... + {x^{n - 1}}{}^n{C_{n - 1}} + {x^n}{}^n{C_n}\] we have,
\[
\Rightarrow 1 + 3{}^n{C_1} + {3^2}{}^n{C_2} + .............. + {3^{n - 1}}{}^n{C_{n - 1}} + {3^n}{}^n{C_n} - 3n - 1 \\
\Rightarrow 1 + 3n + {3^2}{}^n{C_2} + .................. + {3^{n - 1}}{}^n{C_{n - 1}} + {3^n}{}^n{C_n} - 3n - 1 \\
\]
Cancelling the common terms, we get
\[ \Rightarrow {3^2}{}^n{C_2} + .................. + {3^{n - 1}}{}^n{C_{n - 1}} + {3^n}{}^n{C_n}\]
Taking \[{3^2}\]as common, we get
\[
\Rightarrow {3^2}\left( {{}^n{C_2} + ................ + {3^{n - 3}}{}^n{C_{n - 1}} + {3^{n - 2}}{}^n{C_n}} \right) \\
\Rightarrow 9\left( {{}^n{C_2} + ................ + {3^{n - 3}}{}^n{C_{n - 1}} + {3^{n - 2}}{}^n{C_n}} \right) \\
\]
Clearly, set \[X\] has natural numbers which are multiples of 9 (not all) and the set \[Y\]has all the multiples of 9.
Therefore, \[X \subset Y\]. So \[X \cup Y\] is equal to the set of elements in \[Y\].
Thus, the correct option is B. \[Y\]
Note: In the given problem the set \[X \cup Y\] has the elements of both elements of the sets\[X\] and \[Y\]. But the elements of set \[Y\] contain the elements of set \[X\] i.e., \[X \subset Y\] from the solution.
Complete step-by-step answer:
Given set \[Y = \left\{ {9\left( {n - 1} \right):n \in N} \right\}\] and
Set \[X\] contains elements of the form
\[ \Rightarrow {4^n} - 3n - 1\]
Which can be written as
\[ \Rightarrow {\left( {1 + 3} \right)^n} - 3n - 1\]
Opening the terms in the bracket by using the formula \[{\left( {1 + x} \right)^n} = {}^n{C_0} + x{}^n{C_1} + {x^2}{}^n{C_2} + ....................... + {x^{n - 1}}{}^n{C_{n - 1}} + {x^n}{}^n{C_n}\] we have,
\[
\Rightarrow 1 + 3{}^n{C_1} + {3^2}{}^n{C_2} + .............. + {3^{n - 1}}{}^n{C_{n - 1}} + {3^n}{}^n{C_n} - 3n - 1 \\
\Rightarrow 1 + 3n + {3^2}{}^n{C_2} + .................. + {3^{n - 1}}{}^n{C_{n - 1}} + {3^n}{}^n{C_n} - 3n - 1 \\
\]
Cancelling the common terms, we get
\[ \Rightarrow {3^2}{}^n{C_2} + .................. + {3^{n - 1}}{}^n{C_{n - 1}} + {3^n}{}^n{C_n}\]
Taking \[{3^2}\]as common, we get
\[
\Rightarrow {3^2}\left( {{}^n{C_2} + ................ + {3^{n - 3}}{}^n{C_{n - 1}} + {3^{n - 2}}{}^n{C_n}} \right) \\
\Rightarrow 9\left( {{}^n{C_2} + ................ + {3^{n - 3}}{}^n{C_{n - 1}} + {3^{n - 2}}{}^n{C_n}} \right) \\
\]
Clearly, set \[X\] has natural numbers which are multiples of 9 (not all) and the set \[Y\]has all the multiples of 9.
Therefore, \[X \subset Y\]. So \[X \cup Y\] is equal to the set of elements in \[Y\].
Thus, the correct option is B. \[Y\]
Note: In the given problem the set \[X \cup Y\] has the elements of both elements of the sets\[X\] and \[Y\]. But the elements of set \[Y\] contain the elements of set \[X\] i.e., \[X \subset Y\] from the solution.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE