If \[X = \left\{ {{4^n} - 3n - 1:n \in N} \right\}\]and \[Y = \left\{ {9\left( {n - 1} \right):n \in N} \right\}\], then \[X \cup Y\] is equal to
A. \[X\]
B. \[Y\]
C. \[N\]
D. None of the above
Last updated date: 20th Mar 2023
•
Total views: 304.2k
•
Views today: 7.83k
Answer
304.2k+ views
Hint: Convert the set of elements of \[X\] in terms of the set of elements of \[Y\]. While converting the set of elements use Binomial Theorem for expanding the terms. So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
Given set \[Y = \left\{ {9\left( {n - 1} \right):n \in N} \right\}\] and
Set \[X\] contains elements of the form
\[ \Rightarrow {4^n} - 3n - 1\]
Which can be written as
\[ \Rightarrow {\left( {1 + 3} \right)^n} - 3n - 1\]
Opening the terms in the bracket by using the formula \[{\left( {1 + x} \right)^n} = {}^n{C_0} + x{}^n{C_1} + {x^2}{}^n{C_2} + ....................... + {x^{n - 1}}{}^n{C_{n - 1}} + {x^n}{}^n{C_n}\] we have,
\[
\Rightarrow 1 + 3{}^n{C_1} + {3^2}{}^n{C_2} + .............. + {3^{n - 1}}{}^n{C_{n - 1}} + {3^n}{}^n{C_n} - 3n - 1 \\
\Rightarrow 1 + 3n + {3^2}{}^n{C_2} + .................. + {3^{n - 1}}{}^n{C_{n - 1}} + {3^n}{}^n{C_n} - 3n - 1 \\
\]
Cancelling the common terms, we get
\[ \Rightarrow {3^2}{}^n{C_2} + .................. + {3^{n - 1}}{}^n{C_{n - 1}} + {3^n}{}^n{C_n}\]
Taking \[{3^2}\]as common, we get
\[
\Rightarrow {3^2}\left( {{}^n{C_2} + ................ + {3^{n - 3}}{}^n{C_{n - 1}} + {3^{n - 2}}{}^n{C_n}} \right) \\
\Rightarrow 9\left( {{}^n{C_2} + ................ + {3^{n - 3}}{}^n{C_{n - 1}} + {3^{n - 2}}{}^n{C_n}} \right) \\
\]
Clearly, set \[X\] has natural numbers which are multiples of 9 (not all) and the set \[Y\]has all the multiples of 9.
Therefore, \[X \subset Y\]. So \[X \cup Y\] is equal to the set of elements in \[Y\].
Thus, the correct option is B. \[Y\]
Note: In the given problem the set \[X \cup Y\] has the elements of both elements of the sets\[X\] and \[Y\]. But the elements of set \[Y\] contain the elements of set \[X\] i.e., \[X \subset Y\] from the solution.
Complete step-by-step answer:
Given set \[Y = \left\{ {9\left( {n - 1} \right):n \in N} \right\}\] and
Set \[X\] contains elements of the form
\[ \Rightarrow {4^n} - 3n - 1\]
Which can be written as
\[ \Rightarrow {\left( {1 + 3} \right)^n} - 3n - 1\]
Opening the terms in the bracket by using the formula \[{\left( {1 + x} \right)^n} = {}^n{C_0} + x{}^n{C_1} + {x^2}{}^n{C_2} + ....................... + {x^{n - 1}}{}^n{C_{n - 1}} + {x^n}{}^n{C_n}\] we have,
\[
\Rightarrow 1 + 3{}^n{C_1} + {3^2}{}^n{C_2} + .............. + {3^{n - 1}}{}^n{C_{n - 1}} + {3^n}{}^n{C_n} - 3n - 1 \\
\Rightarrow 1 + 3n + {3^2}{}^n{C_2} + .................. + {3^{n - 1}}{}^n{C_{n - 1}} + {3^n}{}^n{C_n} - 3n - 1 \\
\]
Cancelling the common terms, we get
\[ \Rightarrow {3^2}{}^n{C_2} + .................. + {3^{n - 1}}{}^n{C_{n - 1}} + {3^n}{}^n{C_n}\]
Taking \[{3^2}\]as common, we get
\[
\Rightarrow {3^2}\left( {{}^n{C_2} + ................ + {3^{n - 3}}{}^n{C_{n - 1}} + {3^{n - 2}}{}^n{C_n}} \right) \\
\Rightarrow 9\left( {{}^n{C_2} + ................ + {3^{n - 3}}{}^n{C_{n - 1}} + {3^{n - 2}}{}^n{C_n}} \right) \\
\]
Clearly, set \[X\] has natural numbers which are multiples of 9 (not all) and the set \[Y\]has all the multiples of 9.
Therefore, \[X \subset Y\]. So \[X \cup Y\] is equal to the set of elements in \[Y\].
Thus, the correct option is B. \[Y\]
Note: In the given problem the set \[X \cup Y\] has the elements of both elements of the sets\[X\] and \[Y\]. But the elements of set \[Y\] contain the elements of set \[X\] i.e., \[X \subset Y\] from the solution.
Recently Updated Pages
Paulings electronegativity values for elements are class 11 chemistry CBSE

For a particle executing simple harmonic motion the class 11 physics CBSE

Does Nichrome have high resistance class 12 physics CBSE

The function f satisfies the functional equation 3fleft class 12 maths JEE_Main

Write a letter to the Principal of your school to plead class 10 english CBSE

Look at the handout below Write a letter to the organizers class 11 english CBSE

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
