
If \[x = \dfrac{{n\pi }}{2}\] satisfies the equation \[\sin \dfrac{x}{2} - \cos \dfrac{x}{2} = 1 - \sin x\] and the inequality \[\left| {\dfrac{x}{2} - \dfrac{\pi }{2}} \right| \le \dfrac{{3\pi }}{4}\], then
A) \[n = - 1,0,3,5\]
B) \[n = 1,2,4,5\]
C) \[n = 0,2,4\]
D) \[n = - 1,1,3,5\]
Answer
559.5k+ views
Hint:
Here we will first find the values of \[x\] by solving the given inequality. Then we will substitute the values of \[x\] in the given equation. As we substitute those values, we will find the required values of \[n\].
Complete step by step solution:
At first we have to solve the inequality \[\left| {\dfrac{x}{2} - \dfrac{\pi }{2}} \right| \le \dfrac{{3\pi }}{4}\] to find the value of \[x\].
Here, modulus represents the non-negative integer without regard to its sign.
\[ \Rightarrow \left| {\dfrac{x}{2} - \dfrac{\pi }{2}} \right| \le \dfrac{{3\pi }}{4}\]
Taking modulus on both the sides, we get
\[ \Rightarrow \dfrac{x}{2} - \dfrac{\pi }{2} \le \left| {\dfrac{{3\pi }}{4}} \right|\]
\[ \Rightarrow \dfrac{{x - \pi }}{2} \le \dfrac{{3\pi }}{4}\]
Multiplying both side by 2, we get
\[ \Rightarrow x - \pi \le \dfrac{{3\pi }}{2}\]
Adding \[\pi \] on both the sides, we get
\[ \Rightarrow x \le \dfrac{{3\pi }}{2} + \pi \]
\[ \Rightarrow x \le \dfrac{{5\pi }}{2}\]
So, the value of \[x\] should be less than or equal to \[\dfrac{{5\pi }}{2}\] . Since the value lies in the modulus value, the negative value of \[n\] can be neglected. So the values of \[x\] are \[x = 0,\dfrac{\pi }{2},\dfrac{{2\pi }}{2},\dfrac{{3\pi }}{2},\dfrac{{4\pi }}{2},\dfrac{{5\pi }}{2}\] that is \[x = 0,\dfrac{\pi }{2},\pi ,\dfrac{{3\pi }}{2},2\pi ,\dfrac{{5\pi }}{2}\] .These values of \[x\] are obtained by the equation \[x = \dfrac{{n\pi }}{2}\].
These values of \[x\] are substituted in the equation \[\sin \dfrac{x}{2} - \cos \dfrac{x}{2} = 1 - \sin x\] to obtain the values of \[n\].
Substituting \[x = 0\] in the given equation, we get
\[\sin 0 - \cos 0 = 1 - \sin 0\]
Substituting the values of \[\sin 0\] and \[\cos 0\], we get
\[\begin{array}{l} \Rightarrow 0 - 1 = 1 - 0\\ \Rightarrow - 1 = 1\end{array}\]
\[x = 0\] does not satisfy the equation.
Substituting \[x = \dfrac{\pi }{2}\] in the given equation, we get
\[\sin \dfrac{\pi }{4} - \cos \dfrac{\pi }{4} = 1 - \sin \dfrac{\pi }{2}\]
Substituting the values of \[\sin \dfrac{\pi }{2}\] and \[\cos \dfrac{\pi }{2}\], we get
\[\begin{array}{l} \Rightarrow \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{{\sqrt 2 }} = 1 - 1\\ \Rightarrow 0 = 0\end{array}\]
\[x = \dfrac{\pi }{2}\] satisfies the equation.
Substituting \[x = \pi \] in the given equation, we get
\[\sin \dfrac{\pi }{2} - \cos \dfrac{\pi }{2} = 1 - \sin \pi \]
Substituting the values of \[\sin \pi \] and \[\cos \pi \], we get
\[\begin{array}{l} \Rightarrow 1 - 0 = 1 - 0\\ \Rightarrow 1 = 1\end{array}\]
\[x = \pi \] satisfies the equation.
Substitute \[x = \dfrac{{3\pi }}{2}\] in the given equation, we get
\[\sin \dfrac{{3\pi }}{4} - \cos \dfrac{{3\pi }}{4} = 1 - \sin \dfrac{{3\pi }}{2}\]
Substituting the values of \[\sin \dfrac{{3\pi }}{2}\] and \[\cos \dfrac{{3\pi }}{2}\], we get
\[\begin{array}{l} \Rightarrow \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} = 1 + 1\\ \Rightarrow \sqrt 2 = 2\end{array}\]
\[x = \dfrac{{3\pi }}{2}\]does not satisfy the equation.
Substituting \[x = 2\pi \] in the given equation, we get
\[\sin \pi - \cos \pi = 1 - \sin 2\pi \]
Substituting the values of \[\sin 2\pi \] and \[\cos 2\pi \], we get
\[\begin{array}{l} \Rightarrow 0 + 1 = 1 - 0\\ \Rightarrow 1 = 1\end{array}\]
\[x = 2\pi \] satisfies the equation.
Substitute \[x = \dfrac{{5\pi }}{2}\] in the given equation, we get
\[\sin \dfrac{{5\pi }}{4} - \cos \dfrac{{5\pi }}{4} = 1 - \sin \dfrac{{5\pi }}{2}\]
Substituting the values of \[\sin \dfrac{{3\pi }}{2}\] and \[\cos \dfrac{{3\pi }}{2}\], we get
\[\begin{array}{l} \Rightarrow \dfrac{{ - 1}}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} = 1 - 1\\ \Rightarrow 0 = 0\end{array}\]
\[x = \dfrac{{5\pi }}{2}\] satisfies the equation.
So the values of \[x = \dfrac{\pi }{2},\pi ,2\pi ,\dfrac{{5\pi }}{2}\] .
By comparing the coefficient of \[x\] , we get \[n = 1,2,4,5\]
Therefore, \[n = 1,2,4,5\]
Note:
Note: Here, we need to keep in mind different values of the trigonometric function of \[\sin \theta \] and \[\cos \theta \]. If we do not remember the values we might substitute wrong values in the equation and hence get wrong answers. We might commit a mistake by leaving the solution after solving the inequality and getting the value of \[x\]. This will give us the wrong values of \[n\]. We need to find all values of \[x\] which satisfies the given equation to find the correct values of \[n\].
Here we will first find the values of \[x\] by solving the given inequality. Then we will substitute the values of \[x\] in the given equation. As we substitute those values, we will find the required values of \[n\].
Complete step by step solution:
At first we have to solve the inequality \[\left| {\dfrac{x}{2} - \dfrac{\pi }{2}} \right| \le \dfrac{{3\pi }}{4}\] to find the value of \[x\].
Here, modulus represents the non-negative integer without regard to its sign.
\[ \Rightarrow \left| {\dfrac{x}{2} - \dfrac{\pi }{2}} \right| \le \dfrac{{3\pi }}{4}\]
Taking modulus on both the sides, we get
\[ \Rightarrow \dfrac{x}{2} - \dfrac{\pi }{2} \le \left| {\dfrac{{3\pi }}{4}} \right|\]
\[ \Rightarrow \dfrac{{x - \pi }}{2} \le \dfrac{{3\pi }}{4}\]
Multiplying both side by 2, we get
\[ \Rightarrow x - \pi \le \dfrac{{3\pi }}{2}\]
Adding \[\pi \] on both the sides, we get
\[ \Rightarrow x \le \dfrac{{3\pi }}{2} + \pi \]
\[ \Rightarrow x \le \dfrac{{5\pi }}{2}\]
So, the value of \[x\] should be less than or equal to \[\dfrac{{5\pi }}{2}\] . Since the value lies in the modulus value, the negative value of \[n\] can be neglected. So the values of \[x\] are \[x = 0,\dfrac{\pi }{2},\dfrac{{2\pi }}{2},\dfrac{{3\pi }}{2},\dfrac{{4\pi }}{2},\dfrac{{5\pi }}{2}\] that is \[x = 0,\dfrac{\pi }{2},\pi ,\dfrac{{3\pi }}{2},2\pi ,\dfrac{{5\pi }}{2}\] .These values of \[x\] are obtained by the equation \[x = \dfrac{{n\pi }}{2}\].
These values of \[x\] are substituted in the equation \[\sin \dfrac{x}{2} - \cos \dfrac{x}{2} = 1 - \sin x\] to obtain the values of \[n\].
Substituting \[x = 0\] in the given equation, we get
\[\sin 0 - \cos 0 = 1 - \sin 0\]
Substituting the values of \[\sin 0\] and \[\cos 0\], we get
\[\begin{array}{l} \Rightarrow 0 - 1 = 1 - 0\\ \Rightarrow - 1 = 1\end{array}\]
\[x = 0\] does not satisfy the equation.
Substituting \[x = \dfrac{\pi }{2}\] in the given equation, we get
\[\sin \dfrac{\pi }{4} - \cos \dfrac{\pi }{4} = 1 - \sin \dfrac{\pi }{2}\]
Substituting the values of \[\sin \dfrac{\pi }{2}\] and \[\cos \dfrac{\pi }{2}\], we get
\[\begin{array}{l} \Rightarrow \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{{\sqrt 2 }} = 1 - 1\\ \Rightarrow 0 = 0\end{array}\]
\[x = \dfrac{\pi }{2}\] satisfies the equation.
Substituting \[x = \pi \] in the given equation, we get
\[\sin \dfrac{\pi }{2} - \cos \dfrac{\pi }{2} = 1 - \sin \pi \]
Substituting the values of \[\sin \pi \] and \[\cos \pi \], we get
\[\begin{array}{l} \Rightarrow 1 - 0 = 1 - 0\\ \Rightarrow 1 = 1\end{array}\]
\[x = \pi \] satisfies the equation.
Substitute \[x = \dfrac{{3\pi }}{2}\] in the given equation, we get
\[\sin \dfrac{{3\pi }}{4} - \cos \dfrac{{3\pi }}{4} = 1 - \sin \dfrac{{3\pi }}{2}\]
Substituting the values of \[\sin \dfrac{{3\pi }}{2}\] and \[\cos \dfrac{{3\pi }}{2}\], we get
\[\begin{array}{l} \Rightarrow \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} = 1 + 1\\ \Rightarrow \sqrt 2 = 2\end{array}\]
\[x = \dfrac{{3\pi }}{2}\]does not satisfy the equation.
Substituting \[x = 2\pi \] in the given equation, we get
\[\sin \pi - \cos \pi = 1 - \sin 2\pi \]
Substituting the values of \[\sin 2\pi \] and \[\cos 2\pi \], we get
\[\begin{array}{l} \Rightarrow 0 + 1 = 1 - 0\\ \Rightarrow 1 = 1\end{array}\]
\[x = 2\pi \] satisfies the equation.
Substitute \[x = \dfrac{{5\pi }}{2}\] in the given equation, we get
\[\sin \dfrac{{5\pi }}{4} - \cos \dfrac{{5\pi }}{4} = 1 - \sin \dfrac{{5\pi }}{2}\]
Substituting the values of \[\sin \dfrac{{3\pi }}{2}\] and \[\cos \dfrac{{3\pi }}{2}\], we get
\[\begin{array}{l} \Rightarrow \dfrac{{ - 1}}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} = 1 - 1\\ \Rightarrow 0 = 0\end{array}\]
\[x = \dfrac{{5\pi }}{2}\] satisfies the equation.
So the values of \[x = \dfrac{\pi }{2},\pi ,2\pi ,\dfrac{{5\pi }}{2}\] .
By comparing the coefficient of \[x\] , we get \[n = 1,2,4,5\]
Therefore, \[n = 1,2,4,5\]
Note:
Note: Here, we need to keep in mind different values of the trigonometric function of \[\sin \theta \] and \[\cos \theta \]. If we do not remember the values we might substitute wrong values in the equation and hence get wrong answers. We might commit a mistake by leaving the solution after solving the inequality and getting the value of \[x\]. This will give us the wrong values of \[n\]. We need to find all values of \[x\] which satisfies the given equation to find the correct values of \[n\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

