If \[x = a{\sin ^3}\theta \] and \[y = a{\cos ^3}\theta \], then find the value of \[\dfrac{{dy}}{{dx}}\].
Last updated date: 19th Mar 2023
•
Total views: 304.5k
•
Views today: 7.84k
Answer
304.5k+ views
Hint: First find the value of \[\dfrac{{dx}}{{d\theta }}\] and \[\dfrac{{dy}}{{d\theta }}\], then divide them to get \[\dfrac{{dy}}{{dx}}\]. Simplify the answer to express it in terms of x and y.
Complete step-by-step answer:
Let us start solving by finding the expression for \[\dfrac{{dx}}{{d\theta }}\].
\[\dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}(a{\sin ^3}\theta )\]
We can use \[\dfrac{d}{{dx}}(a{x^3}) = 3a{x^2}\] to simplify the equation.
\[\dfrac{{dx}}{{d\theta }} = 3a{\sin ^2}\theta \dfrac{d}{{d\theta }}(\sin \theta )\]
We know that \[\dfrac{d}{{dx}}(\sin x) = \cos x\], hence, we have the following:
\[\dfrac{{dx}}{{d\theta }} = 3a{\sin ^2}\theta \cos \theta .............(1)\]
Now, let us find the expression for \[\dfrac{{dy}}{{d\theta }}\].
\[\dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(a{\cos ^3}\theta )\]
We can use \[\dfrac{d}{{dx}}(a{x^3}) = 3a{x^2}\] to simplify the equation.
\[\dfrac{{dx}}{{d\theta }} = 3a{\cos ^2}\theta \dfrac{d}{{d\theta }}(\cos \theta )\]
We know that \[\dfrac{d}{{dx}}(\cos x) = - \sin x\], hence, we have the following:
\[\dfrac{{dx}}{{d\theta }} = - 3a{\cos ^2}\theta \sin \theta ............(2)\]
We know that,
\[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}}...........(3)\]
Using equation (1) and equation (2) in equation (3), we have:
\[\dfrac{{dy}}{{dx}} = \dfrac{{3a{{\sin }^2}\theta \cos \theta }}{{ - 3a{{\cos }^2}\theta \sin \theta }}\]
Cancelling common terms in the numerator and the denominator we have:
\[\dfrac{{dy}}{{dx}} = - \dfrac{{\sin \theta }}{{\cos \theta }}\]
We know that \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \], hence we have:
\[\dfrac{{dy}}{{dx}} = - \tan \theta ..........(4)\]
We can write equation (4) in terms of x and y.
Let us find the value of \[\dfrac{x}{y}\].
\[\dfrac{x}{y} = \dfrac{{a{{\sin }^3}\theta }}{{a{{\cos }^3}\theta }}\]
Simplifying, we get:
\[\dfrac{x}{y} = \dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}\]
\[\dfrac{x}{y} = {\tan ^3}\theta \]
Let us compute \[\tan \theta \] in terms of x and y by taking the cube root on both sides.
\[\tan \theta = \sqrt[3]{{\dfrac{x}{y}}}.........(5)\]
Substituting equation (5) in equation (4), we get:
\[\dfrac{{dy}}{{dx}} = - \sqrt[3]{{\dfrac{x}{y}}}\]
Hence, the answer is \[ - \sqrt[3]{{\dfrac{x}{y}}}\].
Note: If you express the final answer in terms of \[\theta \], it is a wrong answer. Express the final answer in terms of x and y only.
Complete step-by-step answer:
Let us start solving by finding the expression for \[\dfrac{{dx}}{{d\theta }}\].
\[\dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}(a{\sin ^3}\theta )\]
We can use \[\dfrac{d}{{dx}}(a{x^3}) = 3a{x^2}\] to simplify the equation.
\[\dfrac{{dx}}{{d\theta }} = 3a{\sin ^2}\theta \dfrac{d}{{d\theta }}(\sin \theta )\]
We know that \[\dfrac{d}{{dx}}(\sin x) = \cos x\], hence, we have the following:
\[\dfrac{{dx}}{{d\theta }} = 3a{\sin ^2}\theta \cos \theta .............(1)\]
Now, let us find the expression for \[\dfrac{{dy}}{{d\theta }}\].
\[\dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(a{\cos ^3}\theta )\]
We can use \[\dfrac{d}{{dx}}(a{x^3}) = 3a{x^2}\] to simplify the equation.
\[\dfrac{{dx}}{{d\theta }} = 3a{\cos ^2}\theta \dfrac{d}{{d\theta }}(\cos \theta )\]
We know that \[\dfrac{d}{{dx}}(\cos x) = - \sin x\], hence, we have the following:
\[\dfrac{{dx}}{{d\theta }} = - 3a{\cos ^2}\theta \sin \theta ............(2)\]
We know that,
\[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}}...........(3)\]
Using equation (1) and equation (2) in equation (3), we have:
\[\dfrac{{dy}}{{dx}} = \dfrac{{3a{{\sin }^2}\theta \cos \theta }}{{ - 3a{{\cos }^2}\theta \sin \theta }}\]
Cancelling common terms in the numerator and the denominator we have:
\[\dfrac{{dy}}{{dx}} = - \dfrac{{\sin \theta }}{{\cos \theta }}\]
We know that \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \], hence we have:
\[\dfrac{{dy}}{{dx}} = - \tan \theta ..........(4)\]
We can write equation (4) in terms of x and y.
Let us find the value of \[\dfrac{x}{y}\].
\[\dfrac{x}{y} = \dfrac{{a{{\sin }^3}\theta }}{{a{{\cos }^3}\theta }}\]
Simplifying, we get:
\[\dfrac{x}{y} = \dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}\]
\[\dfrac{x}{y} = {\tan ^3}\theta \]
Let us compute \[\tan \theta \] in terms of x and y by taking the cube root on both sides.
\[\tan \theta = \sqrt[3]{{\dfrac{x}{y}}}.........(5)\]
Substituting equation (5) in equation (4), we get:
\[\dfrac{{dy}}{{dx}} = - \sqrt[3]{{\dfrac{x}{y}}}\]
Hence, the answer is \[ - \sqrt[3]{{\dfrac{x}{y}}}\].
Note: If you express the final answer in terms of \[\theta \], it is a wrong answer. Express the final answer in terms of x and y only.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
