Answer
Verified
492k+ views
Hint: First find the value of \[\dfrac{{dx}}{{d\theta }}\] and \[\dfrac{{dy}}{{d\theta }}\], then divide them to get \[\dfrac{{dy}}{{dx}}\]. Simplify the answer to express it in terms of x and y.
Complete step-by-step answer:
Let us start solving by finding the expression for \[\dfrac{{dx}}{{d\theta }}\].
\[\dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}(a{\sin ^3}\theta )\]
We can use \[\dfrac{d}{{dx}}(a{x^3}) = 3a{x^2}\] to simplify the equation.
\[\dfrac{{dx}}{{d\theta }} = 3a{\sin ^2}\theta \dfrac{d}{{d\theta }}(\sin \theta )\]
We know that \[\dfrac{d}{{dx}}(\sin x) = \cos x\], hence, we have the following:
\[\dfrac{{dx}}{{d\theta }} = 3a{\sin ^2}\theta \cos \theta .............(1)\]
Now, let us find the expression for \[\dfrac{{dy}}{{d\theta }}\].
\[\dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(a{\cos ^3}\theta )\]
We can use \[\dfrac{d}{{dx}}(a{x^3}) = 3a{x^2}\] to simplify the equation.
\[\dfrac{{dx}}{{d\theta }} = 3a{\cos ^2}\theta \dfrac{d}{{d\theta }}(\cos \theta )\]
We know that \[\dfrac{d}{{dx}}(\cos x) = - \sin x\], hence, we have the following:
\[\dfrac{{dx}}{{d\theta }} = - 3a{\cos ^2}\theta \sin \theta ............(2)\]
We know that,
\[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}}...........(3)\]
Using equation (1) and equation (2) in equation (3), we have:
\[\dfrac{{dy}}{{dx}} = \dfrac{{3a{{\sin }^2}\theta \cos \theta }}{{ - 3a{{\cos }^2}\theta \sin \theta }}\]
Cancelling common terms in the numerator and the denominator we have:
\[\dfrac{{dy}}{{dx}} = - \dfrac{{\sin \theta }}{{\cos \theta }}\]
We know that \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \], hence we have:
\[\dfrac{{dy}}{{dx}} = - \tan \theta ..........(4)\]
We can write equation (4) in terms of x and y.
Let us find the value of \[\dfrac{x}{y}\].
\[\dfrac{x}{y} = \dfrac{{a{{\sin }^3}\theta }}{{a{{\cos }^3}\theta }}\]
Simplifying, we get:
\[\dfrac{x}{y} = \dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}\]
\[\dfrac{x}{y} = {\tan ^3}\theta \]
Let us compute \[\tan \theta \] in terms of x and y by taking the cube root on both sides.
\[\tan \theta = \sqrt[3]{{\dfrac{x}{y}}}.........(5)\]
Substituting equation (5) in equation (4), we get:
\[\dfrac{{dy}}{{dx}} = - \sqrt[3]{{\dfrac{x}{y}}}\]
Hence, the answer is \[ - \sqrt[3]{{\dfrac{x}{y}}}\].
Note: If you express the final answer in terms of \[\theta \], it is a wrong answer. Express the final answer in terms of x and y only.
Complete step-by-step answer:
Let us start solving by finding the expression for \[\dfrac{{dx}}{{d\theta }}\].
\[\dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}(a{\sin ^3}\theta )\]
We can use \[\dfrac{d}{{dx}}(a{x^3}) = 3a{x^2}\] to simplify the equation.
\[\dfrac{{dx}}{{d\theta }} = 3a{\sin ^2}\theta \dfrac{d}{{d\theta }}(\sin \theta )\]
We know that \[\dfrac{d}{{dx}}(\sin x) = \cos x\], hence, we have the following:
\[\dfrac{{dx}}{{d\theta }} = 3a{\sin ^2}\theta \cos \theta .............(1)\]
Now, let us find the expression for \[\dfrac{{dy}}{{d\theta }}\].
\[\dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(a{\cos ^3}\theta )\]
We can use \[\dfrac{d}{{dx}}(a{x^3}) = 3a{x^2}\] to simplify the equation.
\[\dfrac{{dx}}{{d\theta }} = 3a{\cos ^2}\theta \dfrac{d}{{d\theta }}(\cos \theta )\]
We know that \[\dfrac{d}{{dx}}(\cos x) = - \sin x\], hence, we have the following:
\[\dfrac{{dx}}{{d\theta }} = - 3a{\cos ^2}\theta \sin \theta ............(2)\]
We know that,
\[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}}...........(3)\]
Using equation (1) and equation (2) in equation (3), we have:
\[\dfrac{{dy}}{{dx}} = \dfrac{{3a{{\sin }^2}\theta \cos \theta }}{{ - 3a{{\cos }^2}\theta \sin \theta }}\]
Cancelling common terms in the numerator and the denominator we have:
\[\dfrac{{dy}}{{dx}} = - \dfrac{{\sin \theta }}{{\cos \theta }}\]
We know that \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \], hence we have:
\[\dfrac{{dy}}{{dx}} = - \tan \theta ..........(4)\]
We can write equation (4) in terms of x and y.
Let us find the value of \[\dfrac{x}{y}\].
\[\dfrac{x}{y} = \dfrac{{a{{\sin }^3}\theta }}{{a{{\cos }^3}\theta }}\]
Simplifying, we get:
\[\dfrac{x}{y} = \dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}\]
\[\dfrac{x}{y} = {\tan ^3}\theta \]
Let us compute \[\tan \theta \] in terms of x and y by taking the cube root on both sides.
\[\tan \theta = \sqrt[3]{{\dfrac{x}{y}}}.........(5)\]
Substituting equation (5) in equation (4), we get:
\[\dfrac{{dy}}{{dx}} = - \sqrt[3]{{\dfrac{x}{y}}}\]
Hence, the answer is \[ - \sqrt[3]{{\dfrac{x}{y}}}\].
Note: If you express the final answer in terms of \[\theta \], it is a wrong answer. Express the final answer in terms of x and y only.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE