
If $ x = a\left( {\cos t + \log \tan \dfrac{t}{2}} \right) $ , and $ y = a\sin t $ , then find $ \dfrac{{{d^2}y}}{{d{x^2}}} $ at $ t = \dfrac{\pi }{3} $ .
Answer
573.9k+ views
Hint: To find $ \dfrac{{{d^2}y}}{{d{x^2}}} $ we will differentiate $ x $ and $ y $ with respect to $ t $ . Then, we will divide expressions to get the expression for $ \dfrac{{dy}}{{dx}} $ .We will again differentiate $ \dfrac{{dy}}{{dx}} $ with respect to $ x $ to get the expression for $ \dfrac{{{d^2}y}}{{d{x^2}}} $ . Then we will substitute the value of $ \dfrac{{dx}}{{dt}} $ in the expression of $ \dfrac{{{d^2}y}}{{d{x^2}}} $ . After that we will substitute the value of $ t $ given in question to get the final answer.
Formula used:
We are using following trigonometric formulas:
$ {\mathop{\rm Sin}\nolimits} 2x = 2\sin x\cos x $
$ {\cos ^2}x + {\sin ^2}x = 1 $
Complete step-by-step answer:
We have given expressions as $ x = a\left( {\cos t + \log \tan \dfrac{t}{2}} \right) $ , and $ y = a\sin t $ .
We will differentiate $ x $ with respect to $ t $ which can be expressed as:
\[\dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{\tan \dfrac{t}{2}}} \cdot {{\sec }^2}\dfrac{t}{2} \cdot \dfrac{1}{2}} \right)\]
We will write $ \tan \dfrac{t}{2} $ as $ \dfrac{{\sin \dfrac{t}{2}}}{{\cos \dfrac{t}{2}}} $ and $ {\sec ^2}\dfrac{t}{2} $ as $ \dfrac{1}{{{{\cos }^2}\dfrac{t}{2}}} $ in the above expression, we will get
\[\begin{array}{l}
\Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{{\cos \dfrac{t}{2}}}{{\sin \dfrac{t}{2}}} \cdot \dfrac{1}{{{{\cos }^2}\dfrac{t}{2}}} \cdot \dfrac{1}{2}} \right)\\
\Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{2\sin \dfrac{t}{2}\cos \dfrac{t}{2}}}} \right)
\end{array}\]
We know that $ {\mathop{\rm Sin}\nolimits} 2x = 2\sin x\cos x $ , hence using this expression in the above expression we get
\[\begin{array}{l}
\Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{\sin 2\left( {\dfrac{t}{2}} \right)}}} \right)\\
\dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{\sin t}}} \right)\\
\Rightarrow \dfrac{{dx}}{{dt}} = a\left( {\dfrac{{ - {{\sin }^2}t + 1}}{{\sin t}}} \right)
\end{array}\]
We know that $ {\cos ^2}x + {\sin ^2}x = 1 $ , we will use this expression in the above expression:
\[\begin{array}{l}
\Rightarrow \dfrac{{dx}}{{dt}} = a\left( {\dfrac{{{{\cos }^2}t}}{{\sin t}}} \right)\\
\end{array}\]……(i)
Now, we will differentiate $ y = a\sin t $ with respect to $ t $ .
$ \dfrac{{dy}}{{dt}} = a \cdot \cos t $ ……(ii)
We will divide equation (ii) by (i) to find $ \dfrac{{dy}}{{dx}} $ .
\[\begin{array}{l}
\dfrac{{{{dy} {\left/
{\vphantom {{dy} {dt}}} \right.
} {dt}}}}{{{{dx} {\left/
{\vphantom {{dx} {dt}}} \right.
} {dt}}}} = \dfrac{{a\cos t}}{{a\left( {\dfrac{{{{\cos }^2}t}}{{\sin t}}} \right)}}\\
\dfrac{{dy}}{{dx}} = \dfrac{{\sin t}}{{\cos t}}\\
\dfrac{{dy}}{{dx}} = \tan t
\end{array}\]
We will differentiate the above expression with respect to $ x $ we will get
\[\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {\sec ^2}t \cdot \dfrac{{dt}}{{dx}}\]
We will substitute \[a\left( {\dfrac{{{{\cos }^2}t}}{{\sin t}}} \right)\]for $ \dfrac{{dx}}{{dt}} $ in the above expression, we will get
\[\begin{array}{l}
\dfrac{{{d^2}y}}{{d{x^2}}} = {\sec ^2}t \cdot \dfrac{{\sin t}}{{a\left( {{{\cos }^2}t} \right)}}\\
\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{{{\sec }^4}t\sin t}}{a}
\end{array}\]
Now, we will substitute $ \dfrac{\pi }{3} $ in the above expression,
\[
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{{{\sec }^4}\left( {\dfrac{\pi }{3}} \right).\sin \dfrac{\pi }{3}}}{a}\\
\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{a} \cdot {\left( 2 \right)^4} \cdot \dfrac{{\sqrt 3 }}{2}\\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{8\sqrt 3 }}{a}
\]
Hence $ \dfrac{{{d^2}y}}{{d{x^2}}} $ at $ t = \dfrac{\pi }{3} $ is $ \dfrac{{8\sqrt 3 }}{a} $ .
Note: The equation of $ y $ and $ x $ in the question are in the terms of $ t $ but we want $ \dfrac{{{d^2}y}}{{d{x^2}}} $ . Hence , we always need to differentiate equations separately with respect to $ t $ and then we can divide the expressions to get the required result. We are also using chain rule for the differentiation of different terms in the expression. We can get the final result by substituting the values given in question for different variables.
Formula used:
We are using following trigonometric formulas:
$ {\mathop{\rm Sin}\nolimits} 2x = 2\sin x\cos x $
$ {\cos ^2}x + {\sin ^2}x = 1 $
Complete step-by-step answer:
We have given expressions as $ x = a\left( {\cos t + \log \tan \dfrac{t}{2}} \right) $ , and $ y = a\sin t $ .
We will differentiate $ x $ with respect to $ t $ which can be expressed as:
\[\dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{\tan \dfrac{t}{2}}} \cdot {{\sec }^2}\dfrac{t}{2} \cdot \dfrac{1}{2}} \right)\]
We will write $ \tan \dfrac{t}{2} $ as $ \dfrac{{\sin \dfrac{t}{2}}}{{\cos \dfrac{t}{2}}} $ and $ {\sec ^2}\dfrac{t}{2} $ as $ \dfrac{1}{{{{\cos }^2}\dfrac{t}{2}}} $ in the above expression, we will get
\[\begin{array}{l}
\Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{{\cos \dfrac{t}{2}}}{{\sin \dfrac{t}{2}}} \cdot \dfrac{1}{{{{\cos }^2}\dfrac{t}{2}}} \cdot \dfrac{1}{2}} \right)\\
\Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{2\sin \dfrac{t}{2}\cos \dfrac{t}{2}}}} \right)
\end{array}\]
We know that $ {\mathop{\rm Sin}\nolimits} 2x = 2\sin x\cos x $ , hence using this expression in the above expression we get
\[\begin{array}{l}
\Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{\sin 2\left( {\dfrac{t}{2}} \right)}}} \right)\\
\dfrac{{dx}}{{dt}} = a\left( { - \sin t + \dfrac{1}{{\sin t}}} \right)\\
\Rightarrow \dfrac{{dx}}{{dt}} = a\left( {\dfrac{{ - {{\sin }^2}t + 1}}{{\sin t}}} \right)
\end{array}\]
We know that $ {\cos ^2}x + {\sin ^2}x = 1 $ , we will use this expression in the above expression:
\[\begin{array}{l}
\Rightarrow \dfrac{{dx}}{{dt}} = a\left( {\dfrac{{{{\cos }^2}t}}{{\sin t}}} \right)\\
\end{array}\]……(i)
Now, we will differentiate $ y = a\sin t $ with respect to $ t $ .
$ \dfrac{{dy}}{{dt}} = a \cdot \cos t $ ……(ii)
We will divide equation (ii) by (i) to find $ \dfrac{{dy}}{{dx}} $ .
\[\begin{array}{l}
\dfrac{{{{dy} {\left/
{\vphantom {{dy} {dt}}} \right.
} {dt}}}}{{{{dx} {\left/
{\vphantom {{dx} {dt}}} \right.
} {dt}}}} = \dfrac{{a\cos t}}{{a\left( {\dfrac{{{{\cos }^2}t}}{{\sin t}}} \right)}}\\
\dfrac{{dy}}{{dx}} = \dfrac{{\sin t}}{{\cos t}}\\
\dfrac{{dy}}{{dx}} = \tan t
\end{array}\]
We will differentiate the above expression with respect to $ x $ we will get
\[\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {\sec ^2}t \cdot \dfrac{{dt}}{{dx}}\]
We will substitute \[a\left( {\dfrac{{{{\cos }^2}t}}{{\sin t}}} \right)\]for $ \dfrac{{dx}}{{dt}} $ in the above expression, we will get
\[\begin{array}{l}
\dfrac{{{d^2}y}}{{d{x^2}}} = {\sec ^2}t \cdot \dfrac{{\sin t}}{{a\left( {{{\cos }^2}t} \right)}}\\
\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{{{\sec }^4}t\sin t}}{a}
\end{array}\]
Now, we will substitute $ \dfrac{\pi }{3} $ in the above expression,
\[
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{{{\sec }^4}\left( {\dfrac{\pi }{3}} \right).\sin \dfrac{\pi }{3}}}{a}\\
\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{a} \cdot {\left( 2 \right)^4} \cdot \dfrac{{\sqrt 3 }}{2}\\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{8\sqrt 3 }}{a}
\]
Hence $ \dfrac{{{d^2}y}}{{d{x^2}}} $ at $ t = \dfrac{\pi }{3} $ is $ \dfrac{{8\sqrt 3 }}{a} $ .
Note: The equation of $ y $ and $ x $ in the question are in the terms of $ t $ but we want $ \dfrac{{{d^2}y}}{{d{x^2}}} $ . Hence , we always need to differentiate equations separately with respect to $ t $ and then we can divide the expressions to get the required result. We are also using chain rule for the differentiation of different terms in the expression. We can get the final result by substituting the values given in question for different variables.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

