
If \[{\text{x = 5 - 2}}\sqrt {\text{6}} \]. Find the value of: \[{\left( {{\text{x - }}\dfrac{{\text{1}}}{{\text{x}}}} \right)^{\text{2}}}\]
Answer
580.8k+ views
Hint: Here, in this question we are going to find the value of the required data
First, we are using the value of \[{\text{x}}\] and substituting them into the required relation.
And you need to simplify the value that you get,
Also, we need to use some algebraic identities there, to solve them
Then we will get the result which we required.
Formula used: The Formulas which we are using to find the required answer are,
\[{{\text{(a - b)}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ - 2ab}}\]
\[{{\text{(a + b)}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ + 2ab}}\]
Complete step-by-step answer:
In the question they have given that
\[{\text{x = 5 - 2}}\sqrt {\text{6}} \]
Also,
$\Rightarrow$\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{5 - 2}}\sqrt {\text{6}} }}\]
By taking conjugate,
$\Rightarrow$\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{5 - 2}}\sqrt {\text{6}} }}{{ \times }}\dfrac{{{\text{5 + 2}}\sqrt {\text{6}} }}{{{\text{5 + 2}}\sqrt {\text{6}} }}\]
Here, we are simplifying the value on above we will get
$\Rightarrow$\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{{\text{5 + 2}}\sqrt {\text{6}} }}{{{{{\text{(5)}}}^{\text{2}}}{\text{ - (2}}\sqrt {\text{6}} {{\text{)}}^{\text{2}}}}}\]
\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{{\text{5 + 2}}\sqrt {\text{6}} }}{{{\text{25 - 24}}}}\]
By Subtracting we have
$\Rightarrow$\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{{\text{5 + 2}}\sqrt {\text{6}} }}{1}\]
As, we know any number divided by \[{\text{1}}\], we will get same number
$\Rightarrow$\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = 5 + 2}}\sqrt {\text{6}} \]
Now we have all the values we are going to substitute them,
$\Rightarrow$\[{\left( {{\text{x - }}\dfrac{1}{{\text{x}}}} \right)^2}\]\[{\text{ = }}{\left( {{\text{(5 - 2}}\sqrt {\text{6}} {\text{) - (5 + 2}}\sqrt {\text{6}} {\text{)}}} \right)^{\text{2}}}\]
While seeing this we can note a thing that the above value is in the form of a formula $\Rightarrow$\[{{\text{(a - b)}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ - 2ab}}\]
So, Assuming that
$\Rightarrow$\[{\text{a = (5 - 2}}\sqrt {\text{6}} {\text{)}}\]
$\Rightarrow$\[{\text{b = (5 + 2}}\sqrt {\text{6}} {\text{)}}\]
And applying them on the equation we will have
\[{\text{ = }}\] \[{{\text{(5 - 2}}\sqrt {\text{6}} {\text{)}}^{\text{2}}}{\text{ + (5 + 2}}\sqrt {\text{6}} {{\text{)}}^{\text{2}}}{\text{ - 2 (5 - 2}}\sqrt {\text{6}} {\text{)(5 + 2}}\sqrt {\text{6}} {\text{)}}\]
While Simplifying them we will get
\[{\text{ = }}\] \[25 + 24 - 2 \times 5 \times 2\sqrt 6 + 25 + 24 + 2 \times 5 \times 2\sqrt 6 - 2(25 + 10\sqrt 6 - 10\sqrt 6 - 24)\]
\[{\text{ = }}\] \[25 + 24 - 2 \times 5 \times 2\sqrt 6 + 25 + 24 + 2 \times 5 \times 2\sqrt 6 - 50 - 20\sqrt 6 + 20\sqrt 6 + 48\]
By Subtraction and multiplication, we have
\[{\text{ = }}\]\[24 + 24 + 48\]
By adding the above values, we get,
\[{\text{ = 96}}\]
The value of the given term is \[96\]
\[\therefore {\left( {{\text{x - }}\dfrac{{\text{1}}}{{\text{x}}}} \right)^{\text{2}}} = 96\]
Note: We are having an alternate method for this problem
\[{\text{x = 5 - 2}}\sqrt {\text{6}} \]
\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{5 - 2}}\sqrt {\text{6}} }}\]
By taking conjugate,
$\Rightarrow$\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{5 - 2}}\sqrt {\text{6}} }}{{ \times }}\dfrac{{{\text{5 + 2}}\sqrt {\text{6}} }}{{{\text{5 + 2}}\sqrt {\text{6}} }}\]
Here, we are simplifying the value on above we will get
$\Rightarrow$\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{{\text{5 + 2}}\sqrt {\text{6}} }}{{{{{\text{(5)}}}^{\text{2}}}{\text{ - (2}}\sqrt {\text{6}} {{\text{)}}^{\text{2}}}}}\]
\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{{\text{5 + 2}}\sqrt {\text{6}} }}{{{\text{25 - 24}}}}\]
By Subtracting we have
$\Rightarrow$\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{{\text{5 + 2}}\sqrt {\text{6}} }}{1}\]
As, we know any number divided by \[{\text{1}}\], we will get same number
$\Rightarrow$\[\dfrac{1}{{\text{x}}}{\text{ = 5 + 2}}\sqrt {\text{6}} \]
Here we are subtracting the both values we get,
$\Rightarrow$\[\left( {{\text{x - }}\dfrac{1}{{\text{x}}}} \right)\] \[{\text{ = (5 - 2}}\sqrt {\text{6}} {\text{) - (5 + 2}}\sqrt {\text{6}} {\text{)}}\]
By Simplifying them, we get
\[{\text{ = 5 - 2}}\sqrt {\text{6}} {\text{ - 5 - 2}}\sqrt {\text{6}} \]
Here we are subtracting the above values,
$\Rightarrow$\[\left( {{\text{x - }}\dfrac{1}{{\text{x}}}} \right)\] \[{\text{ = - 4}}\sqrt {\text{6}} \]
By squaring on both sides, we have
$\Rightarrow$\[{\left( {{\text{x - }}\dfrac{1}{{\text{x}}}} \right)^2}\]\[{\text{ = }}{\left( {{\text{ - 4}}\sqrt {\text{6}} } \right)^2}\]
$\Rightarrow$\[{\left( {{\text{x - }}\dfrac{1}{{\text{x}}}} \right)^2}\]\[{\text{ = }}{\left( {{\text{ - 4}}} \right)^2}\]\[ \times {\text{ }}{\left( {\sqrt {\text{6}} } \right)^2}\]
By squaring the above values, the square root and square will get cancelled and we have
$\Rightarrow$\[{\left( {{\text{x - }}\dfrac{1}{{\text{x}}}} \right)^2}\]\[{\text{ = }}\] \[{{16 \times 6}}\]
By multiplying we will get
$\Rightarrow$\[{\left( {{\text{x - }}\dfrac{1}{{\text{x}}}} \right)^2}\]\[{\text{ = }}\] \[96\]
First, we are using the value of \[{\text{x}}\] and substituting them into the required relation.
And you need to simplify the value that you get,
Also, we need to use some algebraic identities there, to solve them
Then we will get the result which we required.
Formula used: The Formulas which we are using to find the required answer are,
\[{{\text{(a - b)}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ - 2ab}}\]
\[{{\text{(a + b)}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ + 2ab}}\]
Complete step-by-step answer:
In the question they have given that
\[{\text{x = 5 - 2}}\sqrt {\text{6}} \]
Also,
$\Rightarrow$\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{5 - 2}}\sqrt {\text{6}} }}\]
By taking conjugate,
$\Rightarrow$\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{5 - 2}}\sqrt {\text{6}} }}{{ \times }}\dfrac{{{\text{5 + 2}}\sqrt {\text{6}} }}{{{\text{5 + 2}}\sqrt {\text{6}} }}\]
Here, we are simplifying the value on above we will get
$\Rightarrow$\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{{\text{5 + 2}}\sqrt {\text{6}} }}{{{{{\text{(5)}}}^{\text{2}}}{\text{ - (2}}\sqrt {\text{6}} {{\text{)}}^{\text{2}}}}}\]
\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{{\text{5 + 2}}\sqrt {\text{6}} }}{{{\text{25 - 24}}}}\]
By Subtracting we have
$\Rightarrow$\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{{\text{5 + 2}}\sqrt {\text{6}} }}{1}\]
As, we know any number divided by \[{\text{1}}\], we will get same number
$\Rightarrow$\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = 5 + 2}}\sqrt {\text{6}} \]
Now we have all the values we are going to substitute them,
$\Rightarrow$\[{\left( {{\text{x - }}\dfrac{1}{{\text{x}}}} \right)^2}\]\[{\text{ = }}{\left( {{\text{(5 - 2}}\sqrt {\text{6}} {\text{) - (5 + 2}}\sqrt {\text{6}} {\text{)}}} \right)^{\text{2}}}\]
While seeing this we can note a thing that the above value is in the form of a formula $\Rightarrow$\[{{\text{(a - b)}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ - 2ab}}\]
So, Assuming that
$\Rightarrow$\[{\text{a = (5 - 2}}\sqrt {\text{6}} {\text{)}}\]
$\Rightarrow$\[{\text{b = (5 + 2}}\sqrt {\text{6}} {\text{)}}\]
And applying them on the equation we will have
\[{\text{ = }}\] \[{{\text{(5 - 2}}\sqrt {\text{6}} {\text{)}}^{\text{2}}}{\text{ + (5 + 2}}\sqrt {\text{6}} {{\text{)}}^{\text{2}}}{\text{ - 2 (5 - 2}}\sqrt {\text{6}} {\text{)(5 + 2}}\sqrt {\text{6}} {\text{)}}\]
While Simplifying them we will get
\[{\text{ = }}\] \[25 + 24 - 2 \times 5 \times 2\sqrt 6 + 25 + 24 + 2 \times 5 \times 2\sqrt 6 - 2(25 + 10\sqrt 6 - 10\sqrt 6 - 24)\]
\[{\text{ = }}\] \[25 + 24 - 2 \times 5 \times 2\sqrt 6 + 25 + 24 + 2 \times 5 \times 2\sqrt 6 - 50 - 20\sqrt 6 + 20\sqrt 6 + 48\]
By Subtraction and multiplication, we have
\[{\text{ = }}\]\[24 + 24 + 48\]
By adding the above values, we get,
\[{\text{ = 96}}\]
The value of the given term is \[96\]
\[\therefore {\left( {{\text{x - }}\dfrac{{\text{1}}}{{\text{x}}}} \right)^{\text{2}}} = 96\]
Note: We are having an alternate method for this problem
\[{\text{x = 5 - 2}}\sqrt {\text{6}} \]
\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{5 - 2}}\sqrt {\text{6}} }}\]
By taking conjugate,
$\Rightarrow$\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{5 - 2}}\sqrt {\text{6}} }}{{ \times }}\dfrac{{{\text{5 + 2}}\sqrt {\text{6}} }}{{{\text{5 + 2}}\sqrt {\text{6}} }}\]
Here, we are simplifying the value on above we will get
$\Rightarrow$\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{{\text{5 + 2}}\sqrt {\text{6}} }}{{{{{\text{(5)}}}^{\text{2}}}{\text{ - (2}}\sqrt {\text{6}} {{\text{)}}^{\text{2}}}}}\]
\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{{\text{5 + 2}}\sqrt {\text{6}} }}{{{\text{25 - 24}}}}\]
By Subtracting we have
$\Rightarrow$\[\dfrac{{\text{1}}}{{\text{x}}}{\text{ = }}\dfrac{{{\text{5 + 2}}\sqrt {\text{6}} }}{1}\]
As, we know any number divided by \[{\text{1}}\], we will get same number
$\Rightarrow$\[\dfrac{1}{{\text{x}}}{\text{ = 5 + 2}}\sqrt {\text{6}} \]
Here we are subtracting the both values we get,
$\Rightarrow$\[\left( {{\text{x - }}\dfrac{1}{{\text{x}}}} \right)\] \[{\text{ = (5 - 2}}\sqrt {\text{6}} {\text{) - (5 + 2}}\sqrt {\text{6}} {\text{)}}\]
By Simplifying them, we get
\[{\text{ = 5 - 2}}\sqrt {\text{6}} {\text{ - 5 - 2}}\sqrt {\text{6}} \]
Here we are subtracting the above values,
$\Rightarrow$\[\left( {{\text{x - }}\dfrac{1}{{\text{x}}}} \right)\] \[{\text{ = - 4}}\sqrt {\text{6}} \]
By squaring on both sides, we have
$\Rightarrow$\[{\left( {{\text{x - }}\dfrac{1}{{\text{x}}}} \right)^2}\]\[{\text{ = }}{\left( {{\text{ - 4}}\sqrt {\text{6}} } \right)^2}\]
$\Rightarrow$\[{\left( {{\text{x - }}\dfrac{1}{{\text{x}}}} \right)^2}\]\[{\text{ = }}{\left( {{\text{ - 4}}} \right)^2}\]\[ \times {\text{ }}{\left( {\sqrt {\text{6}} } \right)^2}\]
By squaring the above values, the square root and square will get cancelled and we have
$\Rightarrow$\[{\left( {{\text{x - }}\dfrac{1}{{\text{x}}}} \right)^2}\]\[{\text{ = }}\] \[{{16 \times 6}}\]
By multiplying we will get
$\Rightarrow$\[{\left( {{\text{x - }}\dfrac{1}{{\text{x}}}} \right)^2}\]\[{\text{ = }}\] \[96\]
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

