
If \[{{x = 2cos\theta - cos2\theta }}\] and \[{{y = 2sin\theta - sin2\theta }}\] find \[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}\] at \[{{\theta = }}\dfrac{{{\pi }}}{{{2}}}\]
Answer
553.2k+ views
Hint: Here In this question we need to find the second order derivative at the given particular degree
We are going solve the using the values which they have given in the question
For Solving this question using the differentiation formula
We need the find these by applying the values on the differentiation formula we will get the values which will help to solve
Again, we need to differentiate them
we will get the second order derivative and applying the mentioned degree on them
Finally, we will have the required answer
Formula used: The formulas which we are using in the equations are,
\[\dfrac{{{d}}}{{{{dx}}}}{{(sinx) = cosx}}\]
\[\dfrac{{{d}}}{{{{dx}}}}{{(cosx) = - sinx}}\]
\[{{sinA - sinB = 2 cos}}\dfrac{{{{A + B}}}}{{{2}}}{{.sin}}\dfrac{{{{A - B}}}}{{{2}}}\]
\[{{cosA - cosB = 2 sin}}\dfrac{{{{A + B}}}}{{{2}}}{{.sin}}\dfrac{{{{A - B}}}}{{{2}}}\]
Complete step-by-step answer:
According to this question we have that
\[{{x = 2cos\theta - cos2\theta }}\] …………………………..\[{{(1)}}\]
\[{{y = 2sin\theta - sin2\theta }}\] ……………………………\[{{(2)}}\]
By Differentiate equation \[{{(1)}}\] we will get,
$\Rightarrow$\[\dfrac{{{{dx}}}}{{{{d\theta }}}}\]\[{{ = - 2 sin\theta + 2 sin2\theta }}\]
By Differentiate equation \[{{(2)}}\] we will get,
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{d\theta }}}}\]\[{{ = 2 cos\theta - 2 cos2\theta }}\]
Here, we are dividing \[\dfrac{{{{dx}}}}{{{{d\theta }}}}\] and $\Rightarrow$\[\dfrac{{{{dy}}}}{{{{d\theta }}}}\], we will have that
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = }}\dfrac{{{{2 cos\theta - 2 cos2\theta }}}}{{{{ - 2 sin\theta + 2 sin2\theta }}}}\]
As we know the common term on the above values is \[{{2}}\],
We are cancelling out them,
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = }}\dfrac{{{{cos\theta - cos2\theta }}}}{{{{ sin2\theta - sin\theta }}}}\]
Here, we are applying \[{{cosA - cosB}}\] formula and \[{{sinA - sinB}}\] formula, we will get
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = }}\dfrac{{{{2 sin}}\left( {\dfrac{{{{2\theta + \theta }}}}{{{2}}}} \right){{sin}}\left( {\dfrac{{{{2\theta - \theta }}}}{{{2}}}} \right){{ }}}}{{{{2 cos}}\left( {\dfrac{{{{2\theta + \theta }}}}{{{2}}}} \right){{sin}}\left( {\dfrac{{{{2\theta - \theta }}}}{{{2}}}} \right){{ }}}}\]
Cancelling out the like terms on the above, we have,
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = }}\dfrac{{{{ sin}}\left( {\dfrac{{{{2\theta + \theta }}}}{{{2}}}} \right){{ }}}}{{{{ cos}}\left( {\dfrac{{{{2\theta + \theta }}}}{{{2}}}} \right){{ }}}}\]
Let us consider, \[\dfrac{{{{sin\theta }}}}{{{{cos\theta }}}}{{ = tan\theta }}\]
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = tan}}\left( {\dfrac{{{{3\theta }}}}{{{2}}}} \right)\]
Again, we differentiate \[\dfrac{{{{dy}}}}{{{{dx}}}}\], we get,
$\Rightarrow$\[\dfrac{{\dfrac{{{d}}}{{{{d\theta }}}}\left( {\dfrac{{{{dy}}}}{{{{dx}}}}} \right)}}{{\dfrac{{{{dx}}}}{{{{d\theta }}}}}}\] \[{{ = }}\dfrac{{\dfrac{{{3}}}{{{2}}}{{se}}{{{c}}^{{2}}}\left( {\dfrac{{{{3\theta }}}}{{{2}}}} \right)}}{{{{2 sin2\theta - 2sin\theta }}}}\]\[ = \dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}\]
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\dfrac{{\dfrac{{{3}}}{{{2}}}{{se}}{{{c}}^{{2}}}\left( {\dfrac{{{{3\theta }}}}{{{2}}}} \right)}}{{{{2 sin2\theta - 2sin\theta }}}}\]
At \[{{\theta = }}\dfrac{{{\pi }}}{{{2}}}\],
By Applying \[{{\theta }}\] value, we get
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\]\[{{ }}\dfrac{{{3}}}{{{4}}}\left( {\dfrac{{{2}}}{{{{ - 1}}}}} \right)\]
By cancelling each other, we get,
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\]\[{{ - }}\dfrac{{{3}}}{2}\]
Therefore, the second order derivative at the given point \[\dfrac{{{\pi }}}{{{2}}}\] is \[{{ - }}\dfrac{{{3}}}{2}\]
Note: In this question we have
\[{{x = 2cos\theta - cos2\theta }}\] and \[{{y = 2sin\theta - sin2\theta }}\]
While we differentiate them, we get,
$\Rightarrow$\[\dfrac{{{{dx}}}}{{{{d\theta }}}}\]\[{{ = - 2 sin\theta + 2 sin2\theta }}\]
$\Rightarrow$\[{{y = 2sin\theta - sin2\theta }}\]
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{d\theta }}}}\]\[{{ = 2 cos\theta - 2 cos2\theta }}\]
Here we are finding \[\dfrac{{{{dy}}}}{{{{dx}}}}\],
By chain rule,
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}{{ = }}\dfrac{{{{dy}}}}{{{{d\theta }}}}{{ \times }}\dfrac{{{{d\theta }}}}{{{{dx}}}}\]
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[ = \dfrac{{{{ 2cos\theta - 2cos2\theta }}}}{{{{ - 2 sin\theta + 2sin2\theta }}}}\]
Here, we are differentiating them again we get
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\dfrac{{{d}}}{{{{dt}}}}\left( {\dfrac{{{{dy}}}}{{{{dx}}}}} \right)\dfrac{{{{dt}}}}{{{{dx}}}}\]
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\dfrac{{{d}}}{{{{dt}}}}\]\[\left( {\dfrac{{{{ cos\theta - cos2\theta }}}}{{{{ sin2\theta - sin\theta }}}}} \right) \times \dfrac{1}{{{{ - 2 sin\theta + 2 sin2\theta }}}}\]
While multiplying we get
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\dfrac{{{{sin2\theta - sin\theta (2sin2\theta - sin\theta ) - (cos\theta - cos2\theta )(2 cos2\theta - cos\theta )}}}}{{{{{{(sin2\theta - sin\theta )}}}^{{2}}}}}{{ \times }}\dfrac{{{1}}}{{{{ - 2 sin\theta + 2 sin2\theta }}}}\]
At \[{{\theta = }}\dfrac{{{\pi }}}{{{2}}}\],
By applying \[{{\theta }}\] value, we get
\[ = \dfrac{{( - 1)( - 1) - (1)( - 2)}}{{{{( - 1)}^2}}} \times \dfrac{1}{{( - 2)}}\]
By multiplying
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}\]\[{{ = - }}\dfrac{{{3}}}{{{2}}}\]
Therefore, the second order derivative at the given point \[\dfrac{{{\pi }}}{{{2}}}\] is \[{{ - }}\dfrac{{{3}}}{2}\]
We are going solve the using the values which they have given in the question
For Solving this question using the differentiation formula
We need the find these by applying the values on the differentiation formula we will get the values which will help to solve
Again, we need to differentiate them
we will get the second order derivative and applying the mentioned degree on them
Finally, we will have the required answer
Formula used: The formulas which we are using in the equations are,
\[\dfrac{{{d}}}{{{{dx}}}}{{(sinx) = cosx}}\]
\[\dfrac{{{d}}}{{{{dx}}}}{{(cosx) = - sinx}}\]
\[{{sinA - sinB = 2 cos}}\dfrac{{{{A + B}}}}{{{2}}}{{.sin}}\dfrac{{{{A - B}}}}{{{2}}}\]
\[{{cosA - cosB = 2 sin}}\dfrac{{{{A + B}}}}{{{2}}}{{.sin}}\dfrac{{{{A - B}}}}{{{2}}}\]
Complete step-by-step answer:
According to this question we have that
\[{{x = 2cos\theta - cos2\theta }}\] …………………………..\[{{(1)}}\]
\[{{y = 2sin\theta - sin2\theta }}\] ……………………………\[{{(2)}}\]
By Differentiate equation \[{{(1)}}\] we will get,
$\Rightarrow$\[\dfrac{{{{dx}}}}{{{{d\theta }}}}\]\[{{ = - 2 sin\theta + 2 sin2\theta }}\]
By Differentiate equation \[{{(2)}}\] we will get,
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{d\theta }}}}\]\[{{ = 2 cos\theta - 2 cos2\theta }}\]
Here, we are dividing \[\dfrac{{{{dx}}}}{{{{d\theta }}}}\] and $\Rightarrow$\[\dfrac{{{{dy}}}}{{{{d\theta }}}}\], we will have that
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = }}\dfrac{{{{2 cos\theta - 2 cos2\theta }}}}{{{{ - 2 sin\theta + 2 sin2\theta }}}}\]
As we know the common term on the above values is \[{{2}}\],
We are cancelling out them,
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = }}\dfrac{{{{cos\theta - cos2\theta }}}}{{{{ sin2\theta - sin\theta }}}}\]
Here, we are applying \[{{cosA - cosB}}\] formula and \[{{sinA - sinB}}\] formula, we will get
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = }}\dfrac{{{{2 sin}}\left( {\dfrac{{{{2\theta + \theta }}}}{{{2}}}} \right){{sin}}\left( {\dfrac{{{{2\theta - \theta }}}}{{{2}}}} \right){{ }}}}{{{{2 cos}}\left( {\dfrac{{{{2\theta + \theta }}}}{{{2}}}} \right){{sin}}\left( {\dfrac{{{{2\theta - \theta }}}}{{{2}}}} \right){{ }}}}\]
Cancelling out the like terms on the above, we have,
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = }}\dfrac{{{{ sin}}\left( {\dfrac{{{{2\theta + \theta }}}}{{{2}}}} \right){{ }}}}{{{{ cos}}\left( {\dfrac{{{{2\theta + \theta }}}}{{{2}}}} \right){{ }}}}\]
Let us consider, \[\dfrac{{{{sin\theta }}}}{{{{cos\theta }}}}{{ = tan\theta }}\]
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = tan}}\left( {\dfrac{{{{3\theta }}}}{{{2}}}} \right)\]
Again, we differentiate \[\dfrac{{{{dy}}}}{{{{dx}}}}\], we get,
$\Rightarrow$\[\dfrac{{\dfrac{{{d}}}{{{{d\theta }}}}\left( {\dfrac{{{{dy}}}}{{{{dx}}}}} \right)}}{{\dfrac{{{{dx}}}}{{{{d\theta }}}}}}\] \[{{ = }}\dfrac{{\dfrac{{{3}}}{{{2}}}{{se}}{{{c}}^{{2}}}\left( {\dfrac{{{{3\theta }}}}{{{2}}}} \right)}}{{{{2 sin2\theta - 2sin\theta }}}}\]\[ = \dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}\]
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\dfrac{{\dfrac{{{3}}}{{{2}}}{{se}}{{{c}}^{{2}}}\left( {\dfrac{{{{3\theta }}}}{{{2}}}} \right)}}{{{{2 sin2\theta - 2sin\theta }}}}\]
At \[{{\theta = }}\dfrac{{{\pi }}}{{{2}}}\],
By Applying \[{{\theta }}\] value, we get
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\]\[{{ }}\dfrac{{{3}}}{{{4}}}\left( {\dfrac{{{2}}}{{{{ - 1}}}}} \right)\]
By cancelling each other, we get,
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\]\[{{ - }}\dfrac{{{3}}}{2}\]
Therefore, the second order derivative at the given point \[\dfrac{{{\pi }}}{{{2}}}\] is \[{{ - }}\dfrac{{{3}}}{2}\]
Note: In this question we have
\[{{x = 2cos\theta - cos2\theta }}\] and \[{{y = 2sin\theta - sin2\theta }}\]
While we differentiate them, we get,
$\Rightarrow$\[\dfrac{{{{dx}}}}{{{{d\theta }}}}\]\[{{ = - 2 sin\theta + 2 sin2\theta }}\]
$\Rightarrow$\[{{y = 2sin\theta - sin2\theta }}\]
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{d\theta }}}}\]\[{{ = 2 cos\theta - 2 cos2\theta }}\]
Here we are finding \[\dfrac{{{{dy}}}}{{{{dx}}}}\],
By chain rule,
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}{{ = }}\dfrac{{{{dy}}}}{{{{d\theta }}}}{{ \times }}\dfrac{{{{d\theta }}}}{{{{dx}}}}\]
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[ = \dfrac{{{{ 2cos\theta - 2cos2\theta }}}}{{{{ - 2 sin\theta + 2sin2\theta }}}}\]
Here, we are differentiating them again we get
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\dfrac{{{d}}}{{{{dt}}}}\left( {\dfrac{{{{dy}}}}{{{{dx}}}}} \right)\dfrac{{{{dt}}}}{{{{dx}}}}\]
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\dfrac{{{d}}}{{{{dt}}}}\]\[\left( {\dfrac{{{{ cos\theta - cos2\theta }}}}{{{{ sin2\theta - sin\theta }}}}} \right) \times \dfrac{1}{{{{ - 2 sin\theta + 2 sin2\theta }}}}\]
While multiplying we get
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\dfrac{{{{sin2\theta - sin\theta (2sin2\theta - sin\theta ) - (cos\theta - cos2\theta )(2 cos2\theta - cos\theta )}}}}{{{{{{(sin2\theta - sin\theta )}}}^{{2}}}}}{{ \times }}\dfrac{{{1}}}{{{{ - 2 sin\theta + 2 sin2\theta }}}}\]
At \[{{\theta = }}\dfrac{{{\pi }}}{{{2}}}\],
By applying \[{{\theta }}\] value, we get
\[ = \dfrac{{( - 1)( - 1) - (1)( - 2)}}{{{{( - 1)}^2}}} \times \dfrac{1}{{( - 2)}}\]
By multiplying
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}\]\[{{ = - }}\dfrac{{{3}}}{{{2}}}\]
Therefore, the second order derivative at the given point \[\dfrac{{{\pi }}}{{{2}}}\] is \[{{ - }}\dfrac{{{3}}}{2}\]
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

