
If \[{{x = 2cos\theta - cos2\theta }}\] and \[{{y = 2sin\theta - sin2\theta }}\] find \[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}\] at \[{{\theta = }}\dfrac{{{\pi }}}{{{2}}}\]
Answer
566.1k+ views
Hint: Here In this question we need to find the second order derivative at the given particular degree
We are going solve the using the values which they have given in the question
For Solving this question using the differentiation formula
We need the find these by applying the values on the differentiation formula we will get the values which will help to solve
Again, we need to differentiate them
we will get the second order derivative and applying the mentioned degree on them
Finally, we will have the required answer
Formula used: The formulas which we are using in the equations are,
\[\dfrac{{{d}}}{{{{dx}}}}{{(sinx) = cosx}}\]
\[\dfrac{{{d}}}{{{{dx}}}}{{(cosx) = - sinx}}\]
\[{{sinA - sinB = 2 cos}}\dfrac{{{{A + B}}}}{{{2}}}{{.sin}}\dfrac{{{{A - B}}}}{{{2}}}\]
\[{{cosA - cosB = 2 sin}}\dfrac{{{{A + B}}}}{{{2}}}{{.sin}}\dfrac{{{{A - B}}}}{{{2}}}\]
Complete step-by-step answer:
According to this question we have that
\[{{x = 2cos\theta - cos2\theta }}\] …………………………..\[{{(1)}}\]
\[{{y = 2sin\theta - sin2\theta }}\] ……………………………\[{{(2)}}\]
By Differentiate equation \[{{(1)}}\] we will get,
$\Rightarrow$\[\dfrac{{{{dx}}}}{{{{d\theta }}}}\]\[{{ = - 2 sin\theta + 2 sin2\theta }}\]
By Differentiate equation \[{{(2)}}\] we will get,
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{d\theta }}}}\]\[{{ = 2 cos\theta - 2 cos2\theta }}\]
Here, we are dividing \[\dfrac{{{{dx}}}}{{{{d\theta }}}}\] and $\Rightarrow$\[\dfrac{{{{dy}}}}{{{{d\theta }}}}\], we will have that
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = }}\dfrac{{{{2 cos\theta - 2 cos2\theta }}}}{{{{ - 2 sin\theta + 2 sin2\theta }}}}\]
As we know the common term on the above values is \[{{2}}\],
We are cancelling out them,
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = }}\dfrac{{{{cos\theta - cos2\theta }}}}{{{{ sin2\theta - sin\theta }}}}\]
Here, we are applying \[{{cosA - cosB}}\] formula and \[{{sinA - sinB}}\] formula, we will get
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = }}\dfrac{{{{2 sin}}\left( {\dfrac{{{{2\theta + \theta }}}}{{{2}}}} \right){{sin}}\left( {\dfrac{{{{2\theta - \theta }}}}{{{2}}}} \right){{ }}}}{{{{2 cos}}\left( {\dfrac{{{{2\theta + \theta }}}}{{{2}}}} \right){{sin}}\left( {\dfrac{{{{2\theta - \theta }}}}{{{2}}}} \right){{ }}}}\]
Cancelling out the like terms on the above, we have,
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = }}\dfrac{{{{ sin}}\left( {\dfrac{{{{2\theta + \theta }}}}{{{2}}}} \right){{ }}}}{{{{ cos}}\left( {\dfrac{{{{2\theta + \theta }}}}{{{2}}}} \right){{ }}}}\]
Let us consider, \[\dfrac{{{{sin\theta }}}}{{{{cos\theta }}}}{{ = tan\theta }}\]
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = tan}}\left( {\dfrac{{{{3\theta }}}}{{{2}}}} \right)\]
Again, we differentiate \[\dfrac{{{{dy}}}}{{{{dx}}}}\], we get,
$\Rightarrow$\[\dfrac{{\dfrac{{{d}}}{{{{d\theta }}}}\left( {\dfrac{{{{dy}}}}{{{{dx}}}}} \right)}}{{\dfrac{{{{dx}}}}{{{{d\theta }}}}}}\] \[{{ = }}\dfrac{{\dfrac{{{3}}}{{{2}}}{{se}}{{{c}}^{{2}}}\left( {\dfrac{{{{3\theta }}}}{{{2}}}} \right)}}{{{{2 sin2\theta - 2sin\theta }}}}\]\[ = \dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}\]
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\dfrac{{\dfrac{{{3}}}{{{2}}}{{se}}{{{c}}^{{2}}}\left( {\dfrac{{{{3\theta }}}}{{{2}}}} \right)}}{{{{2 sin2\theta - 2sin\theta }}}}\]
At \[{{\theta = }}\dfrac{{{\pi }}}{{{2}}}\],
By Applying \[{{\theta }}\] value, we get
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\]\[{{ }}\dfrac{{{3}}}{{{4}}}\left( {\dfrac{{{2}}}{{{{ - 1}}}}} \right)\]
By cancelling each other, we get,
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\]\[{{ - }}\dfrac{{{3}}}{2}\]
Therefore, the second order derivative at the given point \[\dfrac{{{\pi }}}{{{2}}}\] is \[{{ - }}\dfrac{{{3}}}{2}\]
Note: In this question we have
\[{{x = 2cos\theta - cos2\theta }}\] and \[{{y = 2sin\theta - sin2\theta }}\]
While we differentiate them, we get,
$\Rightarrow$\[\dfrac{{{{dx}}}}{{{{d\theta }}}}\]\[{{ = - 2 sin\theta + 2 sin2\theta }}\]
$\Rightarrow$\[{{y = 2sin\theta - sin2\theta }}\]
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{d\theta }}}}\]\[{{ = 2 cos\theta - 2 cos2\theta }}\]
Here we are finding \[\dfrac{{{{dy}}}}{{{{dx}}}}\],
By chain rule,
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}{{ = }}\dfrac{{{{dy}}}}{{{{d\theta }}}}{{ \times }}\dfrac{{{{d\theta }}}}{{{{dx}}}}\]
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[ = \dfrac{{{{ 2cos\theta - 2cos2\theta }}}}{{{{ - 2 sin\theta + 2sin2\theta }}}}\]
Here, we are differentiating them again we get
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\dfrac{{{d}}}{{{{dt}}}}\left( {\dfrac{{{{dy}}}}{{{{dx}}}}} \right)\dfrac{{{{dt}}}}{{{{dx}}}}\]
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\dfrac{{{d}}}{{{{dt}}}}\]\[\left( {\dfrac{{{{ cos\theta - cos2\theta }}}}{{{{ sin2\theta - sin\theta }}}}} \right) \times \dfrac{1}{{{{ - 2 sin\theta + 2 sin2\theta }}}}\]
While multiplying we get
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\dfrac{{{{sin2\theta - sin\theta (2sin2\theta - sin\theta ) - (cos\theta - cos2\theta )(2 cos2\theta - cos\theta )}}}}{{{{{{(sin2\theta - sin\theta )}}}^{{2}}}}}{{ \times }}\dfrac{{{1}}}{{{{ - 2 sin\theta + 2 sin2\theta }}}}\]
At \[{{\theta = }}\dfrac{{{\pi }}}{{{2}}}\],
By applying \[{{\theta }}\] value, we get
\[ = \dfrac{{( - 1)( - 1) - (1)( - 2)}}{{{{( - 1)}^2}}} \times \dfrac{1}{{( - 2)}}\]
By multiplying
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}\]\[{{ = - }}\dfrac{{{3}}}{{{2}}}\]
Therefore, the second order derivative at the given point \[\dfrac{{{\pi }}}{{{2}}}\] is \[{{ - }}\dfrac{{{3}}}{2}\]
We are going solve the using the values which they have given in the question
For Solving this question using the differentiation formula
We need the find these by applying the values on the differentiation formula we will get the values which will help to solve
Again, we need to differentiate them
we will get the second order derivative and applying the mentioned degree on them
Finally, we will have the required answer
Formula used: The formulas which we are using in the equations are,
\[\dfrac{{{d}}}{{{{dx}}}}{{(sinx) = cosx}}\]
\[\dfrac{{{d}}}{{{{dx}}}}{{(cosx) = - sinx}}\]
\[{{sinA - sinB = 2 cos}}\dfrac{{{{A + B}}}}{{{2}}}{{.sin}}\dfrac{{{{A - B}}}}{{{2}}}\]
\[{{cosA - cosB = 2 sin}}\dfrac{{{{A + B}}}}{{{2}}}{{.sin}}\dfrac{{{{A - B}}}}{{{2}}}\]
Complete step-by-step answer:
According to this question we have that
\[{{x = 2cos\theta - cos2\theta }}\] …………………………..\[{{(1)}}\]
\[{{y = 2sin\theta - sin2\theta }}\] ……………………………\[{{(2)}}\]
By Differentiate equation \[{{(1)}}\] we will get,
$\Rightarrow$\[\dfrac{{{{dx}}}}{{{{d\theta }}}}\]\[{{ = - 2 sin\theta + 2 sin2\theta }}\]
By Differentiate equation \[{{(2)}}\] we will get,
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{d\theta }}}}\]\[{{ = 2 cos\theta - 2 cos2\theta }}\]
Here, we are dividing \[\dfrac{{{{dx}}}}{{{{d\theta }}}}\] and $\Rightarrow$\[\dfrac{{{{dy}}}}{{{{d\theta }}}}\], we will have that
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = }}\dfrac{{{{2 cos\theta - 2 cos2\theta }}}}{{{{ - 2 sin\theta + 2 sin2\theta }}}}\]
As we know the common term on the above values is \[{{2}}\],
We are cancelling out them,
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = }}\dfrac{{{{cos\theta - cos2\theta }}}}{{{{ sin2\theta - sin\theta }}}}\]
Here, we are applying \[{{cosA - cosB}}\] formula and \[{{sinA - sinB}}\] formula, we will get
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = }}\dfrac{{{{2 sin}}\left( {\dfrac{{{{2\theta + \theta }}}}{{{2}}}} \right){{sin}}\left( {\dfrac{{{{2\theta - \theta }}}}{{{2}}}} \right){{ }}}}{{{{2 cos}}\left( {\dfrac{{{{2\theta + \theta }}}}{{{2}}}} \right){{sin}}\left( {\dfrac{{{{2\theta - \theta }}}}{{{2}}}} \right){{ }}}}\]
Cancelling out the like terms on the above, we have,
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = }}\dfrac{{{{ sin}}\left( {\dfrac{{{{2\theta + \theta }}}}{{{2}}}} \right){{ }}}}{{{{ cos}}\left( {\dfrac{{{{2\theta + \theta }}}}{{{2}}}} \right){{ }}}}\]
Let us consider, \[\dfrac{{{{sin\theta }}}}{{{{cos\theta }}}}{{ = tan\theta }}\]
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[{{ = tan}}\left( {\dfrac{{{{3\theta }}}}{{{2}}}} \right)\]
Again, we differentiate \[\dfrac{{{{dy}}}}{{{{dx}}}}\], we get,
$\Rightarrow$\[\dfrac{{\dfrac{{{d}}}{{{{d\theta }}}}\left( {\dfrac{{{{dy}}}}{{{{dx}}}}} \right)}}{{\dfrac{{{{dx}}}}{{{{d\theta }}}}}}\] \[{{ = }}\dfrac{{\dfrac{{{3}}}{{{2}}}{{se}}{{{c}}^{{2}}}\left( {\dfrac{{{{3\theta }}}}{{{2}}}} \right)}}{{{{2 sin2\theta - 2sin\theta }}}}\]\[ = \dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}\]
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\dfrac{{\dfrac{{{3}}}{{{2}}}{{se}}{{{c}}^{{2}}}\left( {\dfrac{{{{3\theta }}}}{{{2}}}} \right)}}{{{{2 sin2\theta - 2sin\theta }}}}\]
At \[{{\theta = }}\dfrac{{{\pi }}}{{{2}}}\],
By Applying \[{{\theta }}\] value, we get
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\]\[{{ }}\dfrac{{{3}}}{{{4}}}\left( {\dfrac{{{2}}}{{{{ - 1}}}}} \right)\]
By cancelling each other, we get,
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\]\[{{ - }}\dfrac{{{3}}}{2}\]
Therefore, the second order derivative at the given point \[\dfrac{{{\pi }}}{{{2}}}\] is \[{{ - }}\dfrac{{{3}}}{2}\]
Note: In this question we have
\[{{x = 2cos\theta - cos2\theta }}\] and \[{{y = 2sin\theta - sin2\theta }}\]
While we differentiate them, we get,
$\Rightarrow$\[\dfrac{{{{dx}}}}{{{{d\theta }}}}\]\[{{ = - 2 sin\theta + 2 sin2\theta }}\]
$\Rightarrow$\[{{y = 2sin\theta - sin2\theta }}\]
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{d\theta }}}}\]\[{{ = 2 cos\theta - 2 cos2\theta }}\]
Here we are finding \[\dfrac{{{{dy}}}}{{{{dx}}}}\],
By chain rule,
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}{{ = }}\dfrac{{{{dy}}}}{{{{d\theta }}}}{{ \times }}\dfrac{{{{d\theta }}}}{{{{dx}}}}\]
$\Rightarrow$\[\dfrac{{{{dy}}}}{{{{dx}}}}\]\[ = \dfrac{{{{ 2cos\theta - 2cos2\theta }}}}{{{{ - 2 sin\theta + 2sin2\theta }}}}\]
Here, we are differentiating them again we get
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\dfrac{{{d}}}{{{{dt}}}}\left( {\dfrac{{{{dy}}}}{{{{dx}}}}} \right)\dfrac{{{{dt}}}}{{{{dx}}}}\]
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\dfrac{{{d}}}{{{{dt}}}}\]\[\left( {\dfrac{{{{ cos\theta - cos2\theta }}}}{{{{ sin2\theta - sin\theta }}}}} \right) \times \dfrac{1}{{{{ - 2 sin\theta + 2 sin2\theta }}}}\]
While multiplying we get
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}{{ = }}\dfrac{{{{sin2\theta - sin\theta (2sin2\theta - sin\theta ) - (cos\theta - cos2\theta )(2 cos2\theta - cos\theta )}}}}{{{{{{(sin2\theta - sin\theta )}}}^{{2}}}}}{{ \times }}\dfrac{{{1}}}{{{{ - 2 sin\theta + 2 sin2\theta }}}}\]
At \[{{\theta = }}\dfrac{{{\pi }}}{{{2}}}\],
By applying \[{{\theta }}\] value, we get
\[ = \dfrac{{( - 1)( - 1) - (1)( - 2)}}{{{{( - 1)}^2}}} \times \dfrac{1}{{( - 2)}}\]
By multiplying
$\Rightarrow$\[\dfrac{{{{{d}}^{{2}}}{{y}}}}{{{{d}}{{{x}}^{{2}}}}}\]\[{{ = - }}\dfrac{{{3}}}{{{2}}}\]
Therefore, the second order derivative at the given point \[\dfrac{{{\pi }}}{{{2}}}\] is \[{{ - }}\dfrac{{{3}}}{2}\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

