
If we have the vectors as \[\vec a\] and \[\vec b\] in space given by \[\vec a = \dfrac{{\hat i - 2\hat j}}{{\sqrt 5 }}\] and \[\vec b = \dfrac{{2\hat i + \hat j + 3\hat k}}{{\sqrt {14} }}\], then the value of \[\left( {2\vec a + \vec b} \right).\left[ {\left( {\vec a \times \vec b} \right) \times \left( {\vec a - 2\vec b} \right)} \right]\] is
A. 3
B. 4
C. 5
D. 6
Answer
569.4k+ views
Hint: In this question, first of all, use the formula of the cross product of three vectors, and then we will proceed by grouping the terms common and simplifying them. Then consider the dot product and mod values of the two vectors \[\vec a\] and \[\vec b\]. Substitute the obtained value in the obtained expression to get the required value.
Complete step-by-step solution:
Given that \[\vec a\] and \[\vec b\] are vectors in a space given by \[\vec a = \dfrac{{\hat i - 2\hat j}}{{\sqrt 5 }}\] and \[\vec b = \dfrac{{2\hat i + \hat j + 3\hat k}}{{\sqrt {14} }}\].
Let the given expression is \[v = \left( {2\vec a + \vec b} \right).\left[ {\left( {\vec a \times \vec b} \right) \times \left( {\vec a - 2\vec b} \right)} \right]\]
By using the formula \[\left[ {\left( {\vec x \times \vec y} \right) \times \vec z} \right] = \left[ { - \left( {\vec z.\vec y} \right)\vec x + \left( {\vec z.\vec x} \right)\vec y} \right]\] we have
\[
\Rightarrow v = \left( {2\vec a + \vec b} \right) \cdot \left[ { - \left\{ {\left( {\vec a - 2\vec b} \right) \cdot \vec b} \right\}\vec a + \left\{ {\left( {\vec a - 2\vec b} \right) \cdot \vec a} \right\}\vec b} \right] \\
\Rightarrow v = \left( {2\vec a + \vec b} \right) \cdot \left[ { - \left( {\vec a \cdot \vec b - 2\vec b \cdot \vec b} \right)\vec a + \left( {\vec a \cdot \vec a - 2\vec b \cdot \vec a} \right)\vec b} \right] \\
\Rightarrow v = \left( {2\vec a + \vec b} \right) \cdot \left[ { - \left( {\vec a \cdot \vec b - 2{{\left| {\vec b} \right|}^2}} \right)\vec a + \left( {{{\left| {\vec a} \right|}^2} - 2\vec b \cdot \vec a} \right)\vec b} \right] \\
\Rightarrow v = \left( {2\vec a + \vec b} \right) \cdot \left[ { - \vec a\left( {\vec a \cdot \vec b} \right) + 2\vec a{{\left| {\vec b} \right|}^2} + {{\left| {\vec a} \right|}^2}\vec b - 2\vec b\left( {\vec a.\vec b} \right)} \right] \\
\\
\]
Now consider dot product of the vectors \[\vec a\] and \[\vec b\]
\[
\Rightarrow \bar a \cdot \bar b = \left( {\dfrac{{\hat i - 2\hat j}}{{\sqrt 5 }}} \right) \cdot \left( {\dfrac{{2\hat i + \hat j + 3\hat k}}{{\sqrt {14} }}} \right) \\
\Rightarrow \bar a \cdot \bar b = \left( {\dfrac{{\hat i - 2\hat j}}{{\sqrt 5 }}} \right) \cdot \left( {\dfrac{{2\hat i + \hat j + 3\hat k}}{{\sqrt {14} }}} \right) \\
\Rightarrow \bar a \cdot \bar b = \dfrac{{2 - 2 + 0}}{{\sqrt {14 \times 5} }} \\
\therefore \bar a \cdot \bar b = \dfrac{{2 - 2}}{{\sqrt {70} }} = 0 \\
\]
Also, consider the mod values of the vectors \[\vec a\] and \[\vec b\]
\[
\Rightarrow \left| {\vec a} \right| = \left| {\dfrac{{\hat i - 2\hat j}}{{\sqrt 5 }}} \right| = \sqrt {\dfrac{{{1^2} + {{\left( { - 2} \right)}^2}}}{{{{\left( {\sqrt 5 } \right)}^2}}}} = \sqrt {\dfrac{{1 + 4}}{5}} = \sqrt {\dfrac{5}{5}} = 1 \\
\Rightarrow \left| {\vec b} \right| = \left| {\dfrac{{2\hat i + \hat j + 3\hat k}}{{\sqrt {14} }}} \right| = \sqrt {\dfrac{{{2^2} + {1^2} + {3^2}}}{{{{\left( {\sqrt {14} } \right)}^2}}}} = \sqrt {\dfrac{{4 + 1 + 9}}{{14}}} = \sqrt {\dfrac{{14}}{{14}}} = 1 \\
\]
Substituting \[\bar a \cdot \bar b = 0,\left| {\bar a} \right| = 1\] and \[\left| {\bar b} \right| = 1\], we have
\[
\Rightarrow v = \left( {2\vec a + \vec b} \right) \cdot \left[ { - \vec a\left( 0 \right) + 2\vec a{{\left| 1 \right|}^2} + {{\left| 1 \right|}^2}\vec b - 2\vec b\left( 0 \right)} \right] \\
\Rightarrow v = \left( {2\vec a + \vec b} \right) \cdot \left[ {2\vec a + \vec b} \right] \\
\Rightarrow v = {\left( {2\vec a + \vec b} \right)^2} = 4{\left| {\vec a} \right|^2} + 4\vec a.\vec b + {\left| {\vec b} \right|^2} \\
\]
Again substituting \[\bar a \cdot \bar b = 0,\left| {\bar a} \right| = 1\] and \[\left| {\bar b} \right| = 1\], we have
\[ \Rightarrow v = 4{\left| 1 \right|^2} + 4\left( 0 \right) + {\left| 1 \right|^2} \\
\therefore v = 4 + 0 + 1 = 5 \]
Thus, the correct option is C. 5
Note: Here we have used the algebraic identity \[{\left( {\vec a + \vec b} \right)^2} = {\left| {\vec a} \right|^2} + 2\vec a.\vec b + {\left| {\vec b} \right|^2}\]. Always remember that the do product of any two vectors is a scalar and the cross product of two vectors is vector quantity.
Complete step-by-step solution:
Given that \[\vec a\] and \[\vec b\] are vectors in a space given by \[\vec a = \dfrac{{\hat i - 2\hat j}}{{\sqrt 5 }}\] and \[\vec b = \dfrac{{2\hat i + \hat j + 3\hat k}}{{\sqrt {14} }}\].
Let the given expression is \[v = \left( {2\vec a + \vec b} \right).\left[ {\left( {\vec a \times \vec b} \right) \times \left( {\vec a - 2\vec b} \right)} \right]\]
By using the formula \[\left[ {\left( {\vec x \times \vec y} \right) \times \vec z} \right] = \left[ { - \left( {\vec z.\vec y} \right)\vec x + \left( {\vec z.\vec x} \right)\vec y} \right]\] we have
\[
\Rightarrow v = \left( {2\vec a + \vec b} \right) \cdot \left[ { - \left\{ {\left( {\vec a - 2\vec b} \right) \cdot \vec b} \right\}\vec a + \left\{ {\left( {\vec a - 2\vec b} \right) \cdot \vec a} \right\}\vec b} \right] \\
\Rightarrow v = \left( {2\vec a + \vec b} \right) \cdot \left[ { - \left( {\vec a \cdot \vec b - 2\vec b \cdot \vec b} \right)\vec a + \left( {\vec a \cdot \vec a - 2\vec b \cdot \vec a} \right)\vec b} \right] \\
\Rightarrow v = \left( {2\vec a + \vec b} \right) \cdot \left[ { - \left( {\vec a \cdot \vec b - 2{{\left| {\vec b} \right|}^2}} \right)\vec a + \left( {{{\left| {\vec a} \right|}^2} - 2\vec b \cdot \vec a} \right)\vec b} \right] \\
\Rightarrow v = \left( {2\vec a + \vec b} \right) \cdot \left[ { - \vec a\left( {\vec a \cdot \vec b} \right) + 2\vec a{{\left| {\vec b} \right|}^2} + {{\left| {\vec a} \right|}^2}\vec b - 2\vec b\left( {\vec a.\vec b} \right)} \right] \\
\\
\]
Now consider dot product of the vectors \[\vec a\] and \[\vec b\]
\[
\Rightarrow \bar a \cdot \bar b = \left( {\dfrac{{\hat i - 2\hat j}}{{\sqrt 5 }}} \right) \cdot \left( {\dfrac{{2\hat i + \hat j + 3\hat k}}{{\sqrt {14} }}} \right) \\
\Rightarrow \bar a \cdot \bar b = \left( {\dfrac{{\hat i - 2\hat j}}{{\sqrt 5 }}} \right) \cdot \left( {\dfrac{{2\hat i + \hat j + 3\hat k}}{{\sqrt {14} }}} \right) \\
\Rightarrow \bar a \cdot \bar b = \dfrac{{2 - 2 + 0}}{{\sqrt {14 \times 5} }} \\
\therefore \bar a \cdot \bar b = \dfrac{{2 - 2}}{{\sqrt {70} }} = 0 \\
\]
Also, consider the mod values of the vectors \[\vec a\] and \[\vec b\]
\[
\Rightarrow \left| {\vec a} \right| = \left| {\dfrac{{\hat i - 2\hat j}}{{\sqrt 5 }}} \right| = \sqrt {\dfrac{{{1^2} + {{\left( { - 2} \right)}^2}}}{{{{\left( {\sqrt 5 } \right)}^2}}}} = \sqrt {\dfrac{{1 + 4}}{5}} = \sqrt {\dfrac{5}{5}} = 1 \\
\Rightarrow \left| {\vec b} \right| = \left| {\dfrac{{2\hat i + \hat j + 3\hat k}}{{\sqrt {14} }}} \right| = \sqrt {\dfrac{{{2^2} + {1^2} + {3^2}}}{{{{\left( {\sqrt {14} } \right)}^2}}}} = \sqrt {\dfrac{{4 + 1 + 9}}{{14}}} = \sqrt {\dfrac{{14}}{{14}}} = 1 \\
\]
Substituting \[\bar a \cdot \bar b = 0,\left| {\bar a} \right| = 1\] and \[\left| {\bar b} \right| = 1\], we have
\[
\Rightarrow v = \left( {2\vec a + \vec b} \right) \cdot \left[ { - \vec a\left( 0 \right) + 2\vec a{{\left| 1 \right|}^2} + {{\left| 1 \right|}^2}\vec b - 2\vec b\left( 0 \right)} \right] \\
\Rightarrow v = \left( {2\vec a + \vec b} \right) \cdot \left[ {2\vec a + \vec b} \right] \\
\Rightarrow v = {\left( {2\vec a + \vec b} \right)^2} = 4{\left| {\vec a} \right|^2} + 4\vec a.\vec b + {\left| {\vec b} \right|^2} \\
\]
Again substituting \[\bar a \cdot \bar b = 0,\left| {\bar a} \right| = 1\] and \[\left| {\bar b} \right| = 1\], we have
\[ \Rightarrow v = 4{\left| 1 \right|^2} + 4\left( 0 \right) + {\left| 1 \right|^2} \\
\therefore v = 4 + 0 + 1 = 5 \]
Thus, the correct option is C. 5
Note: Here we have used the algebraic identity \[{\left( {\vec a + \vec b} \right)^2} = {\left| {\vec a} \right|^2} + 2\vec a.\vec b + {\left| {\vec b} \right|^2}\]. Always remember that the do product of any two vectors is a scalar and the cross product of two vectors is vector quantity.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

