
If we have the matrix \[A = \left[ {\begin{array}{*{20}{c}}
0&{ - \tan \dfrac{\alpha }{2}} \\
{\tan \dfrac{\alpha }{2}}&0
\end{array}} \right]\] and \[I\] the identity matrix of order \[2\], show that \[I + A = \left( {I - A} \right)\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]\]
Answer
479.4k+ views
Hint: Here we are asked to verify the given statement with the given matrix \[A\]. To verify any statement, we first need to find the value of the expression on the left-hand side and then find the value of the expression on the right-hand side. After finding the values we will find whether it satisfies the statement by comparing them.
Formula: Formulas that we need to know before solving this problem:
\[\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\]
\[\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\]
Complete step-by-step solution:
It is given that the matrix \[A = \left[ {\begin{array}{*{20}{c}}
0&{ - \tan \dfrac{\alpha }{2}} \\
{\tan \dfrac{\alpha }{2}}&0
\end{array}} \right]\]. We aim to verify the given equation \[I + A = \left( {I - A} \right)\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]\] where, \[I\] is the identity matrix of order two.
To verify the given equation, we first find the value of the expression on the left-hand side of the given equation. That is \[I + A\].
We already have that \[A = \left[ {\begin{array}{*{20}{c}}
0&{ - \tan \dfrac{\alpha }{2}} \\
{\tan \dfrac{\alpha }{2}}&0
\end{array}} \right]\] and \[I\] is nothing but the identity matrix of order two, \[\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\]
Now let us find the value of the left-hand side expression \[I + A\].
\[I + A = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
0&{ - \tan \dfrac{\alpha }{2}} \\
{\tan \dfrac{\alpha }{2}}&0
\end{array}} \right]\]
On simplifying this we get
\[I + A = \left[ {\begin{array}{*{20}{c}}
1&{ - \tan \dfrac{\alpha }{2}} \\
{\tan \dfrac{\alpha }{2}}&1
\end{array}} \right]\]
Let us now find the value of the expression on the right-hand side. That is \[\left( {I - A} \right)\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]\]
We already have that \[A = \left[ {\begin{array}{*{20}{c}}
0&{ - \tan \dfrac{\alpha }{2}} \\
{\tan \dfrac{\alpha }{2}}&0
\end{array}} \right]\] and \[I\] is nothing but the identity matrix of order two, \[\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\]
Now let us find the value of the right-hand side expression \[\left( {I - A} \right)\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]\].
\[\left( {I - A} \right)\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right] = \left( {\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
0&{ - \tan \dfrac{\alpha }{2}} \\
{\tan \dfrac{\alpha }{2}}&0
\end{array}} \right]} \right) \times \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]\]
On simplifying this we get
\[\left( {I - A} \right)\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{\tan \dfrac{\alpha }{2}} \\
{ - \tan \dfrac{\alpha }{2}}&1
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]\]
On multiplying the above, we get
\[ = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha + \left( {\tan \dfrac{\alpha }{2}} \right)\left( {\sin \alpha } \right)}&{\left( { - \sin \alpha } \right) + \left( {\left( {\tan \dfrac{\alpha }{2}} \right)\left( {\cos \alpha } \right)} \right)} \\
{\left( { - \tan \dfrac{\alpha }{2}} \right)\cos \alpha + \sin \alpha }&{\left( { - \tan \dfrac{\alpha }{2}} \right)\left( { - \sin \alpha } \right) + \cos \alpha }
\end{array}} \right]\]
On further simplifying the above using the formulas \[\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\] and \[\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\] by taking the angle as \[\dfrac{\alpha }{2}\] we get
\[ = \left[ {\begin{array}{*{20}{c}}
{\left( {\dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right) + \tan \dfrac{\alpha }{2}\left( {\dfrac{{2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right)}&{\left( {\dfrac{{ - 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right) + \tan \dfrac{\alpha }{2}\left( {\dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right)} \\
{ - \tan \dfrac{\alpha }{2}\left( {\dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right) + \left( {\dfrac{{2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right)}&{ - \tan \dfrac{\alpha }{2}\left( {\dfrac{{ - 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right) + \left( {\dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right)}
\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} + \dfrac{{2{{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}&{\dfrac{{ - 2\tan \dfrac{\alpha }{2} + \tan \dfrac{\alpha }{2} - {{\tan }^3}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \\
{\dfrac{{ - \tan \dfrac{\alpha }{2}\left( {1 - {{\tan }^2}\dfrac{\alpha }{2}} \right)}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} + \dfrac{{2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}&{\dfrac{{2{{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} + \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}
\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2} + 2{{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}&{\dfrac{{ - 2\tan \dfrac{\alpha }{2} + \tan \dfrac{\alpha }{2} - {{\tan }^3}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \\
{\dfrac{{ - \tan \dfrac{\alpha }{2} + {{\tan }^3}\dfrac{\alpha }{2} + 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}&{\dfrac{{2{{\tan }^2}\dfrac{\alpha }{2} + 1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}
\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}&{\dfrac{{ - \tan \dfrac{\alpha }{2}\left( {1 + {{\tan }^2}\dfrac{\alpha }{2}} \right)}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \\
{\dfrac{{\tan \dfrac{\alpha }{2}\left( {1 + {{\tan }^2}\dfrac{\alpha }{2}} \right)}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}&{\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}
\end{array}} \right]\]\[\left( {I - A} \right)\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - \tan \dfrac{\alpha }{2}} \\
{\tan \dfrac{\alpha }{2}}&1
\end{array}} \right]\]
Thus, we have found the value of the expression on the right-hand side. From both the values of the expressions we see that the left-hand side is equal to the right-hand side. That is \[I + A = \left( {I - A} \right)\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]\]. Therefore, we verified the given statement.
Note: Verifying the given expression or equation can be done in another way also that is, by finding the value of the expression on any one side, we can derive the expression of the other side in that. Addition and subtraction of matrices can be done by adding or subtracting the individual terms concerning their positions.
Formula: Formulas that we need to know before solving this problem:
\[\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\]
\[\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\]
Complete step-by-step solution:
It is given that the matrix \[A = \left[ {\begin{array}{*{20}{c}}
0&{ - \tan \dfrac{\alpha }{2}} \\
{\tan \dfrac{\alpha }{2}}&0
\end{array}} \right]\]. We aim to verify the given equation \[I + A = \left( {I - A} \right)\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]\] where, \[I\] is the identity matrix of order two.
To verify the given equation, we first find the value of the expression on the left-hand side of the given equation. That is \[I + A\].
We already have that \[A = \left[ {\begin{array}{*{20}{c}}
0&{ - \tan \dfrac{\alpha }{2}} \\
{\tan \dfrac{\alpha }{2}}&0
\end{array}} \right]\] and \[I\] is nothing but the identity matrix of order two, \[\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\]
Now let us find the value of the left-hand side expression \[I + A\].
\[I + A = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
0&{ - \tan \dfrac{\alpha }{2}} \\
{\tan \dfrac{\alpha }{2}}&0
\end{array}} \right]\]
On simplifying this we get
\[I + A = \left[ {\begin{array}{*{20}{c}}
1&{ - \tan \dfrac{\alpha }{2}} \\
{\tan \dfrac{\alpha }{2}}&1
\end{array}} \right]\]
Let us now find the value of the expression on the right-hand side. That is \[\left( {I - A} \right)\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]\]
We already have that \[A = \left[ {\begin{array}{*{20}{c}}
0&{ - \tan \dfrac{\alpha }{2}} \\
{\tan \dfrac{\alpha }{2}}&0
\end{array}} \right]\] and \[I\] is nothing but the identity matrix of order two, \[\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\]
Now let us find the value of the right-hand side expression \[\left( {I - A} \right)\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]\].
\[\left( {I - A} \right)\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right] = \left( {\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
0&{ - \tan \dfrac{\alpha }{2}} \\
{\tan \dfrac{\alpha }{2}}&0
\end{array}} \right]} \right) \times \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]\]
On simplifying this we get
\[\left( {I - A} \right)\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{\tan \dfrac{\alpha }{2}} \\
{ - \tan \dfrac{\alpha }{2}}&1
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]\]
On multiplying the above, we get
\[ = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha + \left( {\tan \dfrac{\alpha }{2}} \right)\left( {\sin \alpha } \right)}&{\left( { - \sin \alpha } \right) + \left( {\left( {\tan \dfrac{\alpha }{2}} \right)\left( {\cos \alpha } \right)} \right)} \\
{\left( { - \tan \dfrac{\alpha }{2}} \right)\cos \alpha + \sin \alpha }&{\left( { - \tan \dfrac{\alpha }{2}} \right)\left( { - \sin \alpha } \right) + \cos \alpha }
\end{array}} \right]\]
On further simplifying the above using the formulas \[\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\] and \[\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\] by taking the angle as \[\dfrac{\alpha }{2}\] we get
\[ = \left[ {\begin{array}{*{20}{c}}
{\left( {\dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right) + \tan \dfrac{\alpha }{2}\left( {\dfrac{{2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right)}&{\left( {\dfrac{{ - 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right) + \tan \dfrac{\alpha }{2}\left( {\dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right)} \\
{ - \tan \dfrac{\alpha }{2}\left( {\dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right) + \left( {\dfrac{{2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right)}&{ - \tan \dfrac{\alpha }{2}\left( {\dfrac{{ - 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right) + \left( {\dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right)}
\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} + \dfrac{{2{{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}&{\dfrac{{ - 2\tan \dfrac{\alpha }{2} + \tan \dfrac{\alpha }{2} - {{\tan }^3}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \\
{\dfrac{{ - \tan \dfrac{\alpha }{2}\left( {1 - {{\tan }^2}\dfrac{\alpha }{2}} \right)}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} + \dfrac{{2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}&{\dfrac{{2{{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} + \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}
\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2} + 2{{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}&{\dfrac{{ - 2\tan \dfrac{\alpha }{2} + \tan \dfrac{\alpha }{2} - {{\tan }^3}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \\
{\dfrac{{ - \tan \dfrac{\alpha }{2} + {{\tan }^3}\dfrac{\alpha }{2} + 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}&{\dfrac{{2{{\tan }^2}\dfrac{\alpha }{2} + 1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}
\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}&{\dfrac{{ - \tan \dfrac{\alpha }{2}\left( {1 + {{\tan }^2}\dfrac{\alpha }{2}} \right)}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \\
{\dfrac{{\tan \dfrac{\alpha }{2}\left( {1 + {{\tan }^2}\dfrac{\alpha }{2}} \right)}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}&{\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}
\end{array}} \right]\]\[\left( {I - A} \right)\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - \tan \dfrac{\alpha }{2}} \\
{\tan \dfrac{\alpha }{2}}&1
\end{array}} \right]\]
Thus, we have found the value of the expression on the right-hand side. From both the values of the expressions we see that the left-hand side is equal to the right-hand side. That is \[I + A = \left( {I - A} \right)\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]\]. Therefore, we verified the given statement.
Note: Verifying the given expression or equation can be done in another way also that is, by finding the value of the expression on any one side, we can derive the expression of the other side in that. Addition and subtraction of matrices can be done by adding or subtracting the individual terms concerning their positions.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What happens if Mutations are not corrected class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

