
If we have the differential equation as $\dfrac{dy}{dx}=\dfrac{x-y}{x+y}$ then \[\]
A.$2xy+{{x}^{2}}{{y}^{2}}+xy=c$ \[\]
B.${{x}^{2}}+{{y}^{2}}-x+y=c$\[\]
C. ${{x}^{2}}+{{y}^{2}}-2xy=c$\[\]
D. ${{x}^{2}}-{{y}^{2}}-2xy=c$\[\]
Answer
564.9k+ views
Hint: We see that the given differential equation is a homogeneous differential equation whose standard substitution is $y=vx$.We solve the given homogeneous differential equation by putting $y=vx$ and then using the separation of variables $v,x$ to integrate. We use the standard integration $\int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx}=\ln f\left( x \right)$ to proceed.
Complete step-by-step solution:
We know that a differential equation consists of differentials, functions and variables. We call a first order differential equation homogeneous if $\dfrac{dy}{dx}=f\left( x,y \right)$ if $f\left( x,y \right)=f\left( kx,ky \right)$ for non-zero $k\in R$.We always solve homogeneous differential equation by standard substitution$y=vx$. We are given in the question the following differential equation.
\[\dfrac{dy}{dx}=\dfrac{x-y}{x+y}\]
Let us denote$f\left( x,y \right)=\dfrac{x-y}{x+y}$. For any $k\in R$ we have
\[f\left( kx,ky \right)=\dfrac{kx-ky}{kx+ky}=\dfrac{k\left( x-y \right)}{k\left( x+y \right)}=\dfrac{x-y}{x+y}=f\left( x,y \right)\]
So the given differential equation is a homogeneous differential equation. So let us consider$y=vx$. We differentiate both side with respect to $x$ to have;
\[\begin{align}
& \dfrac{dy}{dx}=v\dfrac{dx}{dx}+x\dfrac{dv}{dx} \\
& \Rightarrow \dfrac{dy}{dx}=v+x\dfrac{dv}{dx}.....\left( 1 \right) \\
\end{align}\]
We put $y=vx$ in the given differential equation to have;
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{x-vx}{x+vx} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1-v}{1+v}.....\left( 2 \right) \\
\end{align}\]
We equate right hand sides of (1) and (2) to have;
\[v+x\dfrac{dv}{dx}=\dfrac{1-v}{1+v}\]
Now we shall use separation of variables . We have
\[\begin{align}
& \Rightarrow x\dfrac{dv}{dx}=\dfrac{1-v}{1+v}-v \\
& \Rightarrow x\dfrac{dv}{dx}=\dfrac{1-v-v\left( 1+v \right)}{1+v} \\
& \Rightarrow x\dfrac{dv}{dx}=\dfrac{1-2v-{{v}^{2}}}{1+v} \\
& \Rightarrow \dfrac{v+1}{1-2v-{{v}^{2}}}=\dfrac{dx}{x} \\
\end{align}\]
We take negative sign both sides and make complete square in the left hand side to have;
\[\begin{align}
& \Rightarrow \dfrac{v+1}{{{v}^{2}}+2v-1}dv=-\dfrac{dx}{x} \\
& \Rightarrow \dfrac{v+1}{{{\left( v+1 \right)}^{2}}-2}dv=-\dfrac{1}{x}dx \\
\end{align}\]
We integrate broth dies with the respect to the corresponding variables and have ;
\[\begin{align}
& \Rightarrow \int{\dfrac{v+1}{{{\left( v+1 \right)}^{2}}-2}dv}=\int{-\dfrac{1}{x}dx} \\
& \Rightarrow \dfrac{1}{2}\int{\dfrac{2\left( v+1 \right)}{{{\left( v+1 \right)}^{2}}-2}dv}=-\int{\dfrac{1}{x}dx} \\
\end{align}\]
We use the standard integration $\int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx}=\ln f\left( x \right)$ in both sides f the above step to have;
\[\Rightarrow \dfrac{1}{2}\ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=\ln \left| x \right|+{{c}_{1}}\]
Let us have ${{c}_{2}}=\ln \left| {{c}_{1}} \right|$. We have
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=-\ln \left| x \right|+\ln \left| {{c}_{2}} \right| \\
& \Rightarrow \ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=2\ln \left| \dfrac{{{c}_{2}}}{x} \right| \\
& \Rightarrow \ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=\ln {{\left| \dfrac{{{c}_{2}}}{x} \right|}^{2}} \\
\end{align}\]
We equate the arguments of respective sides to have;
\[\begin{align}
& \Rightarrow {{\left( v+1 \right)}^{2}}-2=\dfrac{c_{2}^{2}}{{{x}^{2}}} \\
& \Rightarrow {{x}^{2}}\left( {{v}^{2}}-2v-1 \right)=c_{2}^{2} \\
& \Rightarrow {{x}^{2}}\left( {{v}^{2}}-2v-1 \right)=c_{2}^{2} \\
\end{align}\]
We put back $v=\dfrac{y}{x}$ in the above step to have;
\[\begin{align}
& \Rightarrow {{x}^{2}}\left( {{\left( \dfrac{y}{x} \right)}^{2}}+2\left( \dfrac{y}{x} \right)-1 \right)=c_{2}^{2} \\
& \Rightarrow {{x}^{2}}\left( \dfrac{{{y}^{2}}+2xy-{{x}^{2}}}{{{x}^{2}}} \right)=c_{2}^{2} \\
& \Rightarrow {{y}^{2}}+2xy-{{x}^{2}}=c_{2}^{2} \\
& \Rightarrow {{x}^{2}}-{{y}^{2}}-2xy=c\left( \text{where }c=-c_{2}^{2} \right) \\
\end{align}\]
Here ${{c}_{1}},{{c}_{2}},c$ are real constants of integration. So the correct option is D.
Note: We note that the highest differential coefficient of a differential is called order and the highest power on the derivative when expressed in polynomial form. The given differential equation is linear because degree is 1 which makes it a linear homogeneous differential equation. We should remember the logarithmic identities $\ln \left( ab \right)=\ln a+ \ln b$ and $\ln \left( \dfrac{a}{b} \right)=\ln a-\ln b$ while solving homogeneous differential equations.
Complete step-by-step solution:
We know that a differential equation consists of differentials, functions and variables. We call a first order differential equation homogeneous if $\dfrac{dy}{dx}=f\left( x,y \right)$ if $f\left( x,y \right)=f\left( kx,ky \right)$ for non-zero $k\in R$.We always solve homogeneous differential equation by standard substitution$y=vx$. We are given in the question the following differential equation.
\[\dfrac{dy}{dx}=\dfrac{x-y}{x+y}\]
Let us denote$f\left( x,y \right)=\dfrac{x-y}{x+y}$. For any $k\in R$ we have
\[f\left( kx,ky \right)=\dfrac{kx-ky}{kx+ky}=\dfrac{k\left( x-y \right)}{k\left( x+y \right)}=\dfrac{x-y}{x+y}=f\left( x,y \right)\]
So the given differential equation is a homogeneous differential equation. So let us consider$y=vx$. We differentiate both side with respect to $x$ to have;
\[\begin{align}
& \dfrac{dy}{dx}=v\dfrac{dx}{dx}+x\dfrac{dv}{dx} \\
& \Rightarrow \dfrac{dy}{dx}=v+x\dfrac{dv}{dx}.....\left( 1 \right) \\
\end{align}\]
We put $y=vx$ in the given differential equation to have;
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{x-vx}{x+vx} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1-v}{1+v}.....\left( 2 \right) \\
\end{align}\]
We equate right hand sides of (1) and (2) to have;
\[v+x\dfrac{dv}{dx}=\dfrac{1-v}{1+v}\]
Now we shall use separation of variables . We have
\[\begin{align}
& \Rightarrow x\dfrac{dv}{dx}=\dfrac{1-v}{1+v}-v \\
& \Rightarrow x\dfrac{dv}{dx}=\dfrac{1-v-v\left( 1+v \right)}{1+v} \\
& \Rightarrow x\dfrac{dv}{dx}=\dfrac{1-2v-{{v}^{2}}}{1+v} \\
& \Rightarrow \dfrac{v+1}{1-2v-{{v}^{2}}}=\dfrac{dx}{x} \\
\end{align}\]
We take negative sign both sides and make complete square in the left hand side to have;
\[\begin{align}
& \Rightarrow \dfrac{v+1}{{{v}^{2}}+2v-1}dv=-\dfrac{dx}{x} \\
& \Rightarrow \dfrac{v+1}{{{\left( v+1 \right)}^{2}}-2}dv=-\dfrac{1}{x}dx \\
\end{align}\]
We integrate broth dies with the respect to the corresponding variables and have ;
\[\begin{align}
& \Rightarrow \int{\dfrac{v+1}{{{\left( v+1 \right)}^{2}}-2}dv}=\int{-\dfrac{1}{x}dx} \\
& \Rightarrow \dfrac{1}{2}\int{\dfrac{2\left( v+1 \right)}{{{\left( v+1 \right)}^{2}}-2}dv}=-\int{\dfrac{1}{x}dx} \\
\end{align}\]
We use the standard integration $\int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx}=\ln f\left( x \right)$ in both sides f the above step to have;
\[\Rightarrow \dfrac{1}{2}\ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=\ln \left| x \right|+{{c}_{1}}\]
Let us have ${{c}_{2}}=\ln \left| {{c}_{1}} \right|$. We have
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=-\ln \left| x \right|+\ln \left| {{c}_{2}} \right| \\
& \Rightarrow \ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=2\ln \left| \dfrac{{{c}_{2}}}{x} \right| \\
& \Rightarrow \ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=\ln {{\left| \dfrac{{{c}_{2}}}{x} \right|}^{2}} \\
\end{align}\]
We equate the arguments of respective sides to have;
\[\begin{align}
& \Rightarrow {{\left( v+1 \right)}^{2}}-2=\dfrac{c_{2}^{2}}{{{x}^{2}}} \\
& \Rightarrow {{x}^{2}}\left( {{v}^{2}}-2v-1 \right)=c_{2}^{2} \\
& \Rightarrow {{x}^{2}}\left( {{v}^{2}}-2v-1 \right)=c_{2}^{2} \\
\end{align}\]
We put back $v=\dfrac{y}{x}$ in the above step to have;
\[\begin{align}
& \Rightarrow {{x}^{2}}\left( {{\left( \dfrac{y}{x} \right)}^{2}}+2\left( \dfrac{y}{x} \right)-1 \right)=c_{2}^{2} \\
& \Rightarrow {{x}^{2}}\left( \dfrac{{{y}^{2}}+2xy-{{x}^{2}}}{{{x}^{2}}} \right)=c_{2}^{2} \\
& \Rightarrow {{y}^{2}}+2xy-{{x}^{2}}=c_{2}^{2} \\
& \Rightarrow {{x}^{2}}-{{y}^{2}}-2xy=c\left( \text{where }c=-c_{2}^{2} \right) \\
\end{align}\]
Here ${{c}_{1}},{{c}_{2}},c$ are real constants of integration. So the correct option is D.
Note: We note that the highest differential coefficient of a differential is called order and the highest power on the derivative when expressed in polynomial form. The given differential equation is linear because degree is 1 which makes it a linear homogeneous differential equation. We should remember the logarithmic identities $\ln \left( ab \right)=\ln a+ \ln b$ and $\ln \left( \dfrac{a}{b} \right)=\ln a-\ln b$ while solving homogeneous differential equations.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

