Answer
Verified
412.8k+ views
Hint: We see that the given differential equation is a homogeneous differential equation whose standard substitution is $y=vx$.We solve the given homogeneous differential equation by putting $y=vx$ and then using the separation of variables $v,x$ to integrate. We use the standard integration $\int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx}=\ln f\left( x \right)$ to proceed.
Complete step-by-step solution:
We know that a differential equation consists of differentials, functions and variables. We call a first order differential equation homogeneous if $\dfrac{dy}{dx}=f\left( x,y \right)$ if $f\left( x,y \right)=f\left( kx,ky \right)$ for non-zero $k\in R$.We always solve homogeneous differential equation by standard substitution$y=vx$. We are given in the question the following differential equation.
\[\dfrac{dy}{dx}=\dfrac{x-y}{x+y}\]
Let us denote$f\left( x,y \right)=\dfrac{x-y}{x+y}$. For any $k\in R$ we have
\[f\left( kx,ky \right)=\dfrac{kx-ky}{kx+ky}=\dfrac{k\left( x-y \right)}{k\left( x+y \right)}=\dfrac{x-y}{x+y}=f\left( x,y \right)\]
So the given differential equation is a homogeneous differential equation. So let us consider$y=vx$. We differentiate both side with respect to $x$ to have;
\[\begin{align}
& \dfrac{dy}{dx}=v\dfrac{dx}{dx}+x\dfrac{dv}{dx} \\
& \Rightarrow \dfrac{dy}{dx}=v+x\dfrac{dv}{dx}.....\left( 1 \right) \\
\end{align}\]
We put $y=vx$ in the given differential equation to have;
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{x-vx}{x+vx} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1-v}{1+v}.....\left( 2 \right) \\
\end{align}\]
We equate right hand sides of (1) and (2) to have;
\[v+x\dfrac{dv}{dx}=\dfrac{1-v}{1+v}\]
Now we shall use separation of variables . We have
\[\begin{align}
& \Rightarrow x\dfrac{dv}{dx}=\dfrac{1-v}{1+v}-v \\
& \Rightarrow x\dfrac{dv}{dx}=\dfrac{1-v-v\left( 1+v \right)}{1+v} \\
& \Rightarrow x\dfrac{dv}{dx}=\dfrac{1-2v-{{v}^{2}}}{1+v} \\
& \Rightarrow \dfrac{v+1}{1-2v-{{v}^{2}}}=\dfrac{dx}{x} \\
\end{align}\]
We take negative sign both sides and make complete square in the left hand side to have;
\[\begin{align}
& \Rightarrow \dfrac{v+1}{{{v}^{2}}+2v-1}dv=-\dfrac{dx}{x} \\
& \Rightarrow \dfrac{v+1}{{{\left( v+1 \right)}^{2}}-2}dv=-\dfrac{1}{x}dx \\
\end{align}\]
We integrate broth dies with the respect to the corresponding variables and have ;
\[\begin{align}
& \Rightarrow \int{\dfrac{v+1}{{{\left( v+1 \right)}^{2}}-2}dv}=\int{-\dfrac{1}{x}dx} \\
& \Rightarrow \dfrac{1}{2}\int{\dfrac{2\left( v+1 \right)}{{{\left( v+1 \right)}^{2}}-2}dv}=-\int{\dfrac{1}{x}dx} \\
\end{align}\]
We use the standard integration $\int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx}=\ln f\left( x \right)$ in both sides f the above step to have;
\[\Rightarrow \dfrac{1}{2}\ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=\ln \left| x \right|+{{c}_{1}}\]
Let us have ${{c}_{2}}=\ln \left| {{c}_{1}} \right|$. We have
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=-\ln \left| x \right|+\ln \left| {{c}_{2}} \right| \\
& \Rightarrow \ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=2\ln \left| \dfrac{{{c}_{2}}}{x} \right| \\
& \Rightarrow \ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=\ln {{\left| \dfrac{{{c}_{2}}}{x} \right|}^{2}} \\
\end{align}\]
We equate the arguments of respective sides to have;
\[\begin{align}
& \Rightarrow {{\left( v+1 \right)}^{2}}-2=\dfrac{c_{2}^{2}}{{{x}^{2}}} \\
& \Rightarrow {{x}^{2}}\left( {{v}^{2}}-2v-1 \right)=c_{2}^{2} \\
& \Rightarrow {{x}^{2}}\left( {{v}^{2}}-2v-1 \right)=c_{2}^{2} \\
\end{align}\]
We put back $v=\dfrac{y}{x}$ in the above step to have;
\[\begin{align}
& \Rightarrow {{x}^{2}}\left( {{\left( \dfrac{y}{x} \right)}^{2}}+2\left( \dfrac{y}{x} \right)-1 \right)=c_{2}^{2} \\
& \Rightarrow {{x}^{2}}\left( \dfrac{{{y}^{2}}+2xy-{{x}^{2}}}{{{x}^{2}}} \right)=c_{2}^{2} \\
& \Rightarrow {{y}^{2}}+2xy-{{x}^{2}}=c_{2}^{2} \\
& \Rightarrow {{x}^{2}}-{{y}^{2}}-2xy=c\left( \text{where }c=-c_{2}^{2} \right) \\
\end{align}\]
Here ${{c}_{1}},{{c}_{2}},c$ are real constants of integration. So the correct option is D.
Note: We note that the highest differential coefficient of a differential is called order and the highest power on the derivative when expressed in polynomial form. The given differential equation is linear because degree is 1 which makes it a linear homogeneous differential equation. We should remember the logarithmic identities $\ln \left( ab \right)=\ln a+ \ln b$ and $\ln \left( \dfrac{a}{b} \right)=\ln a-\ln b$ while solving homogeneous differential equations.
Complete step-by-step solution:
We know that a differential equation consists of differentials, functions and variables. We call a first order differential equation homogeneous if $\dfrac{dy}{dx}=f\left( x,y \right)$ if $f\left( x,y \right)=f\left( kx,ky \right)$ for non-zero $k\in R$.We always solve homogeneous differential equation by standard substitution$y=vx$. We are given in the question the following differential equation.
\[\dfrac{dy}{dx}=\dfrac{x-y}{x+y}\]
Let us denote$f\left( x,y \right)=\dfrac{x-y}{x+y}$. For any $k\in R$ we have
\[f\left( kx,ky \right)=\dfrac{kx-ky}{kx+ky}=\dfrac{k\left( x-y \right)}{k\left( x+y \right)}=\dfrac{x-y}{x+y}=f\left( x,y \right)\]
So the given differential equation is a homogeneous differential equation. So let us consider$y=vx$. We differentiate both side with respect to $x$ to have;
\[\begin{align}
& \dfrac{dy}{dx}=v\dfrac{dx}{dx}+x\dfrac{dv}{dx} \\
& \Rightarrow \dfrac{dy}{dx}=v+x\dfrac{dv}{dx}.....\left( 1 \right) \\
\end{align}\]
We put $y=vx$ in the given differential equation to have;
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{x-vx}{x+vx} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1-v}{1+v}.....\left( 2 \right) \\
\end{align}\]
We equate right hand sides of (1) and (2) to have;
\[v+x\dfrac{dv}{dx}=\dfrac{1-v}{1+v}\]
Now we shall use separation of variables . We have
\[\begin{align}
& \Rightarrow x\dfrac{dv}{dx}=\dfrac{1-v}{1+v}-v \\
& \Rightarrow x\dfrac{dv}{dx}=\dfrac{1-v-v\left( 1+v \right)}{1+v} \\
& \Rightarrow x\dfrac{dv}{dx}=\dfrac{1-2v-{{v}^{2}}}{1+v} \\
& \Rightarrow \dfrac{v+1}{1-2v-{{v}^{2}}}=\dfrac{dx}{x} \\
\end{align}\]
We take negative sign both sides and make complete square in the left hand side to have;
\[\begin{align}
& \Rightarrow \dfrac{v+1}{{{v}^{2}}+2v-1}dv=-\dfrac{dx}{x} \\
& \Rightarrow \dfrac{v+1}{{{\left( v+1 \right)}^{2}}-2}dv=-\dfrac{1}{x}dx \\
\end{align}\]
We integrate broth dies with the respect to the corresponding variables and have ;
\[\begin{align}
& \Rightarrow \int{\dfrac{v+1}{{{\left( v+1 \right)}^{2}}-2}dv}=\int{-\dfrac{1}{x}dx} \\
& \Rightarrow \dfrac{1}{2}\int{\dfrac{2\left( v+1 \right)}{{{\left( v+1 \right)}^{2}}-2}dv}=-\int{\dfrac{1}{x}dx} \\
\end{align}\]
We use the standard integration $\int{\dfrac{{{f}^{'}}\left( x \right)}{f\left( x \right)}dx}=\ln f\left( x \right)$ in both sides f the above step to have;
\[\Rightarrow \dfrac{1}{2}\ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=\ln \left| x \right|+{{c}_{1}}\]
Let us have ${{c}_{2}}=\ln \left| {{c}_{1}} \right|$. We have
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=-\ln \left| x \right|+\ln \left| {{c}_{2}} \right| \\
& \Rightarrow \ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=2\ln \left| \dfrac{{{c}_{2}}}{x} \right| \\
& \Rightarrow \ln \left| {{\left( v+1 \right)}^{2}}-2 \right|=\ln {{\left| \dfrac{{{c}_{2}}}{x} \right|}^{2}} \\
\end{align}\]
We equate the arguments of respective sides to have;
\[\begin{align}
& \Rightarrow {{\left( v+1 \right)}^{2}}-2=\dfrac{c_{2}^{2}}{{{x}^{2}}} \\
& \Rightarrow {{x}^{2}}\left( {{v}^{2}}-2v-1 \right)=c_{2}^{2} \\
& \Rightarrow {{x}^{2}}\left( {{v}^{2}}-2v-1 \right)=c_{2}^{2} \\
\end{align}\]
We put back $v=\dfrac{y}{x}$ in the above step to have;
\[\begin{align}
& \Rightarrow {{x}^{2}}\left( {{\left( \dfrac{y}{x} \right)}^{2}}+2\left( \dfrac{y}{x} \right)-1 \right)=c_{2}^{2} \\
& \Rightarrow {{x}^{2}}\left( \dfrac{{{y}^{2}}+2xy-{{x}^{2}}}{{{x}^{2}}} \right)=c_{2}^{2} \\
& \Rightarrow {{y}^{2}}+2xy-{{x}^{2}}=c_{2}^{2} \\
& \Rightarrow {{x}^{2}}-{{y}^{2}}-2xy=c\left( \text{where }c=-c_{2}^{2} \right) \\
\end{align}\]
Here ${{c}_{1}},{{c}_{2}},c$ are real constants of integration. So the correct option is D.
Note: We note that the highest differential coefficient of a differential is called order and the highest power on the derivative when expressed in polynomial form. The given differential equation is linear because degree is 1 which makes it a linear homogeneous differential equation. We should remember the logarithmic identities $\ln \left( ab \right)=\ln a+ \ln b$ and $\ln \left( \dfrac{a}{b} \right)=\ln a-\ln b$ while solving homogeneous differential equations.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE