
If we have an expression as $y=A{{e}^{mx}}+B{{e}^{nx}}$ , show that $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-\left( m+n \right)\dfrac{dy}{dx}+mny=0$
Answer
510.6k+ views
Hint: First we will take the expression given in the question that is $y=A{{e}^{mx}}+B{{e}^{nx}}$ and then we will find the first order derivative and the second order derivative using $f\left( x \right)={{e}^{x}}\Rightarrow f'\left( x \right)={{e}^{x}}$ and the power rule that is $f\left( x \right)={{x}^{n}}\Rightarrow f'\left( x \right)=n{{x}^{n-1}}$ , then we will put the values of the first derivative and the second order derivative in the Left hand side expression of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-\left( m+n \right)\dfrac{dy}{dx}+mny=0$, and then ultimately prove it equal to $0$ .
Complete step-by-step solution:
Let’s take $y=A{{e}^{mx}}+B{{e}^{nx}}$ , now we will differentiate this expression with respect to the variable $x$
$\dfrac{dy}{dx}=~\dfrac{d\left( A{{e}^{mx}}+B{{e}^{nx}} \right)}{dx}$ ,
Now we know that, $\dfrac{d\left( f\left( x \right)+g\left( x \right) \right)}{dx}=\dfrac{d\left( f\left( x \right) \right)}{dx}+\dfrac{d\left( g\left( x \right) \right)}{dx}$
Therefore we have
$\dfrac{dy}{dx}=~\dfrac{d\left( A{{e}^{mx}}+B{{e}^{nx}} \right)}{dx}=\dfrac{d\left( A{{e}^{mx}} \right)}{dx}+\dfrac{d\left( B{{e}^{nx}} \right)}{dx}$ ,
Now we will take out the constant:
$\dfrac{d\left( A{{e}^{mx}} \right)}{dx}+\dfrac{d\left( B{{e}^{nx}} \right)}{dx}=A\dfrac{d\left( {{e}^{mx}} \right)}{dx}+B\dfrac{d\left( {{e}^{nx}} \right)}{dx}$ ,
We already know that the differentiation of: $f\left( x \right)={{e}^{x}}\Rightarrow f'\left( x \right)={{e}^{x}}$
Therefore, we can write as
$A\dfrac{d\left( {{e}^{mx}} \right)}{dx}+B\dfrac{d\left( {{e}^{nx}} \right)}{dx}=A{{e}^{mx}}\dfrac{d\left( mx \right)}{dx}+B{{e}^{nx}}\dfrac{d\left( nx \right)}{dx}$
It is standard according to the power rule that is $f\left( x \right)={{x}^{n}}\Rightarrow f'\left( x \right)=n{{x}^{n-1}}$
Therefore, applying it, we get
$\begin{align}
& A{{e}^{mx}}\dfrac{d\left( mx \right)}{dx}+B{{e}^{nx}}\dfrac{d\left( nx \right)}{dx}=A{{e}^{mx}}m+B{{e}^{nx}}n \\
& \Rightarrow Am{{e}^{mx}}+Bn{{e}^{nx}} \\
\end{align}$
Therefore, $\dfrac{dy}{dx}=Am{{e}^{mx}}+Bn{{e}^{nx}}\text{ }......\text{ Equation 1}\text{.}$
Now, we will again differentiate in order to find the second derivative:
\[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d\left( Am{{e}^{mx}}+Bn{{e}^{nx}} \right)}{dx}\]
Now we know that, $\dfrac{d\left( f\left( x \right)+g\left( x \right) \right)}{dx}=\dfrac{d\left( f\left( x \right) \right)}{dx}+\dfrac{d\left( g\left( x \right) \right)}{dx}$
Therefore,
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=~\dfrac{d\left( Am{{e}^{mx}}+Bn{{e}^{nx}} \right)}{dx}=\dfrac{d\left( Am{{e}^{mx}} \right)}{dx}+\dfrac{d\left( Bn{{e}^{nx}} \right)}{dx}$ ,
Now we will take out the constant:
$\dfrac{d\left( Am{{e}^{mx}} \right)}{dx}+\dfrac{d\left( Bn{{e}^{nx}} \right)}{dx}=Am\dfrac{d\left( {{e}^{mx}} \right)}{dx}+Bn\dfrac{d\left( {{e}^{nx}} \right)}{dx}$ ,
We already know that the differentiation of: $f\left( x \right)={{e}^{x}}\Rightarrow f'\left( x \right)={{e}^{x}}$
Therefore,
$Am\dfrac{d\left( {{e}^{mx}} \right)}{dx}+Bn\dfrac{d\left( {{e}^{nx}} \right)}{dx}=Am{{e}^{mx}}\dfrac{d\left( mx \right)}{dx}+Bn{{e}^{nx}}\dfrac{d\left( nx \right)}{dx}$
It is standard according to the power rule that $f\left( x \right)={{x}^{n}}\Rightarrow f'\left( x \right)=n{{x}^{n-1}}$
Therefore:
$\begin{align}
& Am{{e}^{mx}}\dfrac{d\left( mx \right)}{dx}+Bn{{e}^{nx}}\dfrac{d\left( nx \right)}{dx}=A{{e}^{mx}}{{m}^{2}}+B{{e}^{nx}}{{n}^{2}} \\
& \Rightarrow A{{m}^{2}}{{e}^{mx}}+B{{n}^{2}}{{e}^{nx}} \\
\end{align}$
Therefore, $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=A{{m}^{2}}{{e}^{mx}}+B{{n}^{2}}{{e}^{nx}}\text{ }..........\text{Equation 2}\text{.}$
Now we are given in the question that: $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-\left( m+n \right)\dfrac{dy}{dx}+mny=0$
We will now solve the left hand side of the expression that is:
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-\left( m+n \right)\dfrac{dy}{dx}+mny$ ,
We will now put the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ from equation 2 and the value of $\dfrac{dy}{dx}$ from equation 1,
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-\left( m+n \right)\dfrac{dy}{dx}+mny \\
& =\left( A{{m}^{2}}{{e}^{mx}}+B{{n}^{2}}{{e}^{nx}} \right)-\left( m+n \right)\left( Am{{e}^{mx}}+Bn{{e}^{nx}} \right)+mn\left( A{{e}^{mx}}+B{{e}^{nx}} \right) \\
& =\left( A{{m}^{2}}{{e}^{mx}}+B{{n}^{2}}{{e}^{nx}} \right)-m\left( Am{{e}^{mx}}+Bn{{e}^{nx}} \right)-n\left( Am{{e}^{mx}}+Bn{{e}^{nx}} \right)+mnA{{e}^{mx}}+mnB{{e}^{nx}} \\
& =A{{m}^{2}}{{e}^{mx}}+B{{n}^{2}}{{e}^{nx}}-A{{m}^{2}}{{e}^{mx}}-Bmn{{e}^{nx}}-Amn{{e}^{mx}}-B{{n}^{2}}{{e}^{nx}}+Amn{{e}^{mx}}+Bmn{{e}^{nx}} \\
& =0=R.H.S. \\
\end{align}$
Hence Proved.
Note: Students can make the mistake while doing the calculation, you must be careful about the signs in the calculation as it can be a bit messy. Also note that in functions like $f\left( x \right)={{e}^{g\left( x \right)}}\Rightarrow f'\left( x \right)={{e}^{g\left( x \right)}}g'\left( x \right)$ . Remember to mention the properties that you use while proving any expression.
Complete step-by-step solution:
Let’s take $y=A{{e}^{mx}}+B{{e}^{nx}}$ , now we will differentiate this expression with respect to the variable $x$
$\dfrac{dy}{dx}=~\dfrac{d\left( A{{e}^{mx}}+B{{e}^{nx}} \right)}{dx}$ ,
Now we know that, $\dfrac{d\left( f\left( x \right)+g\left( x \right) \right)}{dx}=\dfrac{d\left( f\left( x \right) \right)}{dx}+\dfrac{d\left( g\left( x \right) \right)}{dx}$
Therefore we have
$\dfrac{dy}{dx}=~\dfrac{d\left( A{{e}^{mx}}+B{{e}^{nx}} \right)}{dx}=\dfrac{d\left( A{{e}^{mx}} \right)}{dx}+\dfrac{d\left( B{{e}^{nx}} \right)}{dx}$ ,
Now we will take out the constant:
$\dfrac{d\left( A{{e}^{mx}} \right)}{dx}+\dfrac{d\left( B{{e}^{nx}} \right)}{dx}=A\dfrac{d\left( {{e}^{mx}} \right)}{dx}+B\dfrac{d\left( {{e}^{nx}} \right)}{dx}$ ,
We already know that the differentiation of: $f\left( x \right)={{e}^{x}}\Rightarrow f'\left( x \right)={{e}^{x}}$
Therefore, we can write as
$A\dfrac{d\left( {{e}^{mx}} \right)}{dx}+B\dfrac{d\left( {{e}^{nx}} \right)}{dx}=A{{e}^{mx}}\dfrac{d\left( mx \right)}{dx}+B{{e}^{nx}}\dfrac{d\left( nx \right)}{dx}$
It is standard according to the power rule that is $f\left( x \right)={{x}^{n}}\Rightarrow f'\left( x \right)=n{{x}^{n-1}}$
Therefore, applying it, we get
$\begin{align}
& A{{e}^{mx}}\dfrac{d\left( mx \right)}{dx}+B{{e}^{nx}}\dfrac{d\left( nx \right)}{dx}=A{{e}^{mx}}m+B{{e}^{nx}}n \\
& \Rightarrow Am{{e}^{mx}}+Bn{{e}^{nx}} \\
\end{align}$
Therefore, $\dfrac{dy}{dx}=Am{{e}^{mx}}+Bn{{e}^{nx}}\text{ }......\text{ Equation 1}\text{.}$
Now, we will again differentiate in order to find the second derivative:
\[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d\left( Am{{e}^{mx}}+Bn{{e}^{nx}} \right)}{dx}\]
Now we know that, $\dfrac{d\left( f\left( x \right)+g\left( x \right) \right)}{dx}=\dfrac{d\left( f\left( x \right) \right)}{dx}+\dfrac{d\left( g\left( x \right) \right)}{dx}$
Therefore,
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=~\dfrac{d\left( Am{{e}^{mx}}+Bn{{e}^{nx}} \right)}{dx}=\dfrac{d\left( Am{{e}^{mx}} \right)}{dx}+\dfrac{d\left( Bn{{e}^{nx}} \right)}{dx}$ ,
Now we will take out the constant:
$\dfrac{d\left( Am{{e}^{mx}} \right)}{dx}+\dfrac{d\left( Bn{{e}^{nx}} \right)}{dx}=Am\dfrac{d\left( {{e}^{mx}} \right)}{dx}+Bn\dfrac{d\left( {{e}^{nx}} \right)}{dx}$ ,
We already know that the differentiation of: $f\left( x \right)={{e}^{x}}\Rightarrow f'\left( x \right)={{e}^{x}}$
Therefore,
$Am\dfrac{d\left( {{e}^{mx}} \right)}{dx}+Bn\dfrac{d\left( {{e}^{nx}} \right)}{dx}=Am{{e}^{mx}}\dfrac{d\left( mx \right)}{dx}+Bn{{e}^{nx}}\dfrac{d\left( nx \right)}{dx}$
It is standard according to the power rule that $f\left( x \right)={{x}^{n}}\Rightarrow f'\left( x \right)=n{{x}^{n-1}}$
Therefore:
$\begin{align}
& Am{{e}^{mx}}\dfrac{d\left( mx \right)}{dx}+Bn{{e}^{nx}}\dfrac{d\left( nx \right)}{dx}=A{{e}^{mx}}{{m}^{2}}+B{{e}^{nx}}{{n}^{2}} \\
& \Rightarrow A{{m}^{2}}{{e}^{mx}}+B{{n}^{2}}{{e}^{nx}} \\
\end{align}$
Therefore, $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=A{{m}^{2}}{{e}^{mx}}+B{{n}^{2}}{{e}^{nx}}\text{ }..........\text{Equation 2}\text{.}$
Now we are given in the question that: $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-\left( m+n \right)\dfrac{dy}{dx}+mny=0$
We will now solve the left hand side of the expression that is:
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-\left( m+n \right)\dfrac{dy}{dx}+mny$ ,
We will now put the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ from equation 2 and the value of $\dfrac{dy}{dx}$ from equation 1,
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-\left( m+n \right)\dfrac{dy}{dx}+mny \\
& =\left( A{{m}^{2}}{{e}^{mx}}+B{{n}^{2}}{{e}^{nx}} \right)-\left( m+n \right)\left( Am{{e}^{mx}}+Bn{{e}^{nx}} \right)+mn\left( A{{e}^{mx}}+B{{e}^{nx}} \right) \\
& =\left( A{{m}^{2}}{{e}^{mx}}+B{{n}^{2}}{{e}^{nx}} \right)-m\left( Am{{e}^{mx}}+Bn{{e}^{nx}} \right)-n\left( Am{{e}^{mx}}+Bn{{e}^{nx}} \right)+mnA{{e}^{mx}}+mnB{{e}^{nx}} \\
& =A{{m}^{2}}{{e}^{mx}}+B{{n}^{2}}{{e}^{nx}}-A{{m}^{2}}{{e}^{mx}}-Bmn{{e}^{nx}}-Amn{{e}^{mx}}-B{{n}^{2}}{{e}^{nx}}+Amn{{e}^{mx}}+Bmn{{e}^{nx}} \\
& =0=R.H.S. \\
\end{align}$
Hence Proved.
Note: Students can make the mistake while doing the calculation, you must be careful about the signs in the calculation as it can be a bit messy. Also note that in functions like $f\left( x \right)={{e}^{g\left( x \right)}}\Rightarrow f'\left( x \right)={{e}^{g\left( x \right)}}g'\left( x \right)$ . Remember to mention the properties that you use while proving any expression.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
