
If we have an expression as ${{x}^{2}}+6xy+{{y}^{2}}=10$ then show that $\dfrac{{d^{2}y}}{d{{x}^{2}}}=\dfrac{80}{{{\left( 3x+y \right)}^{3}}}$. \[\]
Answer
472.2k+ views
Hint: We begin by differentiating the given equation ${{x}^{2}}+6xy+{{y}^{2}}=10$ implicitly with respect to $x$ and find the expression for $\dfrac{dy}{dx}$. We differentiate $\dfrac{dy}{dx}$ with respect to $x$ to find $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$. We simplify until we get an expression of ${{x}^{2}}+6xy+{{y}^{2}}$ in the numerator where we put the given values to conclude the proof. We use the sum rule$\dfrac{d}{dx}\left( f+g \right)=\dfrac{d}{dx}f+\dfrac{d}{dx}g$, the product rule $\dfrac{d}{dx}\left( fg \right)=g\dfrac{d}{dx}f+f\dfrac{d}{dx}g$, the quotient rule $ \dfrac{d}{dx}\left( \dfrac{f}{g} \right)=\dfrac{g\dfrac{d}{dx}f-f\dfrac{d}{dx}g}{{{\left( g \right)}^{2}}}$ and the chain rule $\dfrac{d}{dx}f\left( g\left( x \right) \right)=\left( \dfrac{d}{dx}f\left( g\left( x \right) \right) \right)\times \left( \dfrac{d}{dx}g\left( x \right) \right)$ to find derivatives.
Complete step-by-step solution
We know that an explicit equation can be expressed $y$ in terms of $x$ but for an implicit equation $y$cannot be expressed in terms of $x$. The given equation is an implicit equation in $x$ and $y$which is
\[{{x}^{2}}+6xy+{{y}^{2}}=10\]
We are asked to prove$\dfrac{d{{y}^{2}}}{d{{x}^{2}}}=\dfrac{80}{{{\left( 3x+y \right)}^{3}}}$. We know that when we differentiate implicitly either with respect to $x$ or with respect to $y$; we use the chain rule to treat $x$ or $y$ as a function of $y$ or $x$ respectively. Since we have to find $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$; let us differentiate the given equation by $x$.We have;
\[\Rightarrow \dfrac{d}{dx}\left( {{x}^{2}}+6xy+{{y}^{2}} \right)=0\]
We use sum rule of derivative and have;
\[\Rightarrow \dfrac{d}{dx}{{x}^{2}}+\dfrac{d}{dx}6xy+\dfrac{d}{dx}{{y}^{2}}=0\]
We use product rule of differentiation for $\dfrac{d}{dx}6xy$ and chain rule for $\dfrac{d}{dx}{{y}^{2}}$ to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}{{x}^{2}}+6\left( y\dfrac{d}{dx}x+x\dfrac{d}{dx}y \right)+\dfrac{d}{dx}{{y}^{2}}=0 \\
& \Rightarrow 2x+6\left( y+x\dfrac{dy}{dx} \right)+2y\dfrac{dy}{dx}=0 \\
& \Rightarrow 2x+6y+6x\dfrac{dy}{dx}+2y\dfrac{dy}{dx}=0 \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{-\left( 2x+6y \right)}{\left( 6x+2y \right)}=-\dfrac{x+3y}{3x+y} \\
\end{align}\]
We differentiate the above once again with respect to $x$ and represent the derivatives as ${{y}^{'}},{{y}^{''}}$. We have
\[\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\dfrac{-\left( x+3y \right)}{3x+y}\]
We use the quotient rule of differentiation in the above step to differentiate the expression at the right hand side to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{\left( 3x+y \right)\dfrac{d}{dx}-\left( x+3y \right)-\left( -\left( x+3y \right) \right)\dfrac{d}{dx}\left( 3x+y \right)}{{{\left( 3x+y \right)}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-\left( 3x+y \right)\left( 1+3\dfrac{dy}{dx} \right)+\left( x+3y \right)\left( 3+\dfrac{dy}{dx} \right)}{{{\left( 3x+y \right)}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{\left( 3x+y \right)\left( 1+3\dfrac{dy}{dx} \right)-\left( x+3y \right)\left( 3+\dfrac{dy}{dx} \right)}{{{\left( 3x+y \right)}^{2}}} \\
\end{align}\]
We put the obtained expression of $\dfrac{dy}{dx}$ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{\left( 3x+y \right)\left( 1-3\times \dfrac{x+3y}{3x+y} \right)-\left( x+3y \right)\left( 3-\dfrac{x+3y}{3x+y} \right)}{{{\left( 3x+y \right)}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{\left( 3x+y \right)\left( \dfrac{3x+y-3x-9y}{3x+y} \right)-\left( x+3y \right)\left( \dfrac{9x+3y-x-3y}{3x+y} \right)}{{{\left( 3x+y \right)}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{\left( 3x+y \right)\left( \dfrac{-8y}{3x+y} \right)-\left( x+3y \right)\left( \dfrac{8x}{3x+y} \right)}{{{\left( 3x+y \right)}^{2}}} \\
\end{align}\]
Let us take $\dfrac{-8}{3x+y}$ common in the numerator and have,
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{\dfrac{-8}{3x+y}\left\{ \left( 3x+y \right)y+\left( x+3y \right)x \right\}}{{{\left( 3x+y \right)}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=8\dfrac{3xy+{{y}^{2}}+{{x}^{2}}+3xy}{{{\left( 3x+y \right)}^{3}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{8\left( {{x}^{2}}+6xy+{{y}^{2}} \right)}{{{\left( 3x+y \right)}^{3}}} \\
\end{align}\]
We put back the given value ${{x}^{2}}+6xy+{{y}^{2}}=10$ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{8\times 10}{{{\left( 3x+y \right)}^{3}}} \\
& \therefore \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{80}{{{\left( 3x+y \right)}^{3}}} \\
\end{align}\]
Hence the given statement is proved. \[\]
Note: We note that the statement of proof is a representation of the given equation as a differential equation which has order (highest order derivative) 2 and degree 3. We note the given equation is a quadratic equation of two variable whose general form is given by ${{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$. Since ${{h}^{2}}-ab>0$and it is a curve the given equation is an equation of a hyperbola.
Complete step-by-step solution
We know that an explicit equation can be expressed $y$ in terms of $x$ but for an implicit equation $y$cannot be expressed in terms of $x$. The given equation is an implicit equation in $x$ and $y$which is
\[{{x}^{2}}+6xy+{{y}^{2}}=10\]
We are asked to prove$\dfrac{d{{y}^{2}}}{d{{x}^{2}}}=\dfrac{80}{{{\left( 3x+y \right)}^{3}}}$. We know that when we differentiate implicitly either with respect to $x$ or with respect to $y$; we use the chain rule to treat $x$ or $y$ as a function of $y$ or $x$ respectively. Since we have to find $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$; let us differentiate the given equation by $x$.We have;
\[\Rightarrow \dfrac{d}{dx}\left( {{x}^{2}}+6xy+{{y}^{2}} \right)=0\]
We use sum rule of derivative and have;
\[\Rightarrow \dfrac{d}{dx}{{x}^{2}}+\dfrac{d}{dx}6xy+\dfrac{d}{dx}{{y}^{2}}=0\]
We use product rule of differentiation for $\dfrac{d}{dx}6xy$ and chain rule for $\dfrac{d}{dx}{{y}^{2}}$ to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}{{x}^{2}}+6\left( y\dfrac{d}{dx}x+x\dfrac{d}{dx}y \right)+\dfrac{d}{dx}{{y}^{2}}=0 \\
& \Rightarrow 2x+6\left( y+x\dfrac{dy}{dx} \right)+2y\dfrac{dy}{dx}=0 \\
& \Rightarrow 2x+6y+6x\dfrac{dy}{dx}+2y\dfrac{dy}{dx}=0 \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{-\left( 2x+6y \right)}{\left( 6x+2y \right)}=-\dfrac{x+3y}{3x+y} \\
\end{align}\]
We differentiate the above once again with respect to $x$ and represent the derivatives as ${{y}^{'}},{{y}^{''}}$. We have
\[\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\dfrac{-\left( x+3y \right)}{3x+y}\]
We use the quotient rule of differentiation in the above step to differentiate the expression at the right hand side to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{\left( 3x+y \right)\dfrac{d}{dx}-\left( x+3y \right)-\left( -\left( x+3y \right) \right)\dfrac{d}{dx}\left( 3x+y \right)}{{{\left( 3x+y \right)}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-\left( 3x+y \right)\left( 1+3\dfrac{dy}{dx} \right)+\left( x+3y \right)\left( 3+\dfrac{dy}{dx} \right)}{{{\left( 3x+y \right)}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{\left( 3x+y \right)\left( 1+3\dfrac{dy}{dx} \right)-\left( x+3y \right)\left( 3+\dfrac{dy}{dx} \right)}{{{\left( 3x+y \right)}^{2}}} \\
\end{align}\]
We put the obtained expression of $\dfrac{dy}{dx}$ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{\left( 3x+y \right)\left( 1-3\times \dfrac{x+3y}{3x+y} \right)-\left( x+3y \right)\left( 3-\dfrac{x+3y}{3x+y} \right)}{{{\left( 3x+y \right)}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{\left( 3x+y \right)\left( \dfrac{3x+y-3x-9y}{3x+y} \right)-\left( x+3y \right)\left( \dfrac{9x+3y-x-3y}{3x+y} \right)}{{{\left( 3x+y \right)}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{\left( 3x+y \right)\left( \dfrac{-8y}{3x+y} \right)-\left( x+3y \right)\left( \dfrac{8x}{3x+y} \right)}{{{\left( 3x+y \right)}^{2}}} \\
\end{align}\]
Let us take $\dfrac{-8}{3x+y}$ common in the numerator and have,
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{\dfrac{-8}{3x+y}\left\{ \left( 3x+y \right)y+\left( x+3y \right)x \right\}}{{{\left( 3x+y \right)}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=8\dfrac{3xy+{{y}^{2}}+{{x}^{2}}+3xy}{{{\left( 3x+y \right)}^{3}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{8\left( {{x}^{2}}+6xy+{{y}^{2}} \right)}{{{\left( 3x+y \right)}^{3}}} \\
\end{align}\]
We put back the given value ${{x}^{2}}+6xy+{{y}^{2}}=10$ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{8\times 10}{{{\left( 3x+y \right)}^{3}}} \\
& \therefore \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{80}{{{\left( 3x+y \right)}^{3}}} \\
\end{align}\]
Hence the given statement is proved. \[\]
Note: We note that the statement of proof is a representation of the given equation as a differential equation which has order (highest order derivative) 2 and degree 3. We note the given equation is a quadratic equation of two variable whose general form is given by ${{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$. Since ${{h}^{2}}-ab>0$and it is a curve the given equation is an equation of a hyperbola.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
