
If we have a matrix as If \[A\left( \alpha \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right]\], then the matrix \[{A^2}\left( \alpha \right) = \]
\[1){\text{ }}A\left( {2\alpha } \right)\]
\[2){\text{ }}A\left( \alpha \right)\]
\[3){\text{ }}A\left( {3\alpha } \right)\]
\[4){\text{ }}A\left( {4\alpha } \right)\]
Answer
500.7k+ views
Hint: We have to find the value of the matrix \[{A^2}\left( \alpha \right)\] . We solve this using the concept of operations of matrices . We should have the knowledge of the cases for which the multiplication of two matrices is possible or not . For solving this problem we should also have the knowledge of the various trigonometric identities for the double angle of sine function , cosine function . We should also have the knowledge about the order of a matrix .
Complete step-by-step solution:
Given : \[A\left( \alpha \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right]\]
The order of \[A\left( \alpha \right)\]is \[2 \times 2\]
Multiplication of matrices
Let \[A = \left[ {\begin{array}{*{20}{c}}
a&b
\end{array}} \right]\]and \[B = \left[ {\begin{array}{*{20}{c}}
c \\
d
\end{array}} \right]\]
Then , the product of AB is given as :
\[AB = \left[ {a \times c + b \times d} \right]\]
For multiplication the number of columns of the first matrix should be equal to the number of rows of the second matrix .
Using multiplication of matrices , we get
\[{A^2}\left( \alpha \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right]\]
\[{A^2}\left( \alpha \right) = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha - {{\sin }^2}\alpha }&{\sin \alpha \cos \alpha + \cos \alpha \sin \alpha } \\
{ - (\sin \alpha \cos \alpha + \cos \alpha \sin \alpha )}&{{{\cos }^2}\alpha - {{\sin }^2}\alpha }
\end{array}} \right]\]
We know that ,
Double angle formula of sin function and cos function is given as :
\[\sin 2x = 2\sin x\cos x\]
\[\cos 2x = {\cos ^2}x - {\sin ^2}x\]
Using the double angle formula , we get
${A^2}(\alpha ) = \left( {\begin{array}{*{20}{c}}
{cos2\alpha }&{sin2\alpha } \\
{ - sin2\alpha }&{cos2\alpha }
\end{array}} \right)$
From above relation , we get
${A^2}(\alpha ) = A(2\alpha )$
Thus , the value of \[{A^2}\left( \alpha \right)\]is \[A\left( {2\alpha } \right)\]
Hence , the correct option is \[\left( 1 \right)\].
Note: The properties of multiplication of matrices :
(1) Associative Law :
For any three matrices \[A\] , \[B\] and \[C\] . We have\[\left( {AB} \right)C = A\left( {BC} \right)\], whenever both sides of the equality are defined .
(2) Distributive Law :
For any three matrices \[A\] , \[B\] and \[C\].
\[\left( i \right)\] \[A\left( {B + C} \right) = AB + AC\] , \[(ii)\] \[\left( {A + B} \right)C = AC + BC\] whenever both sides of equality are defined .
(3) The existence of multiplicative identity :
For every square matrix \[A\], there exists an identity matrix of the same order such that \[IA = AI = A\].
Complete step-by-step solution:
Given : \[A\left( \alpha \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right]\]
The order of \[A\left( \alpha \right)\]is \[2 \times 2\]
Multiplication of matrices
Let \[A = \left[ {\begin{array}{*{20}{c}}
a&b
\end{array}} \right]\]and \[B = \left[ {\begin{array}{*{20}{c}}
c \\
d
\end{array}} \right]\]
Then , the product of AB is given as :
\[AB = \left[ {a \times c + b \times d} \right]\]
For multiplication the number of columns of the first matrix should be equal to the number of rows of the second matrix .
Using multiplication of matrices , we get
\[{A^2}\left( \alpha \right) = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha } \\
{ - \sin \alpha }&{\cos \alpha }
\end{array}} \right]\]
\[{A^2}\left( \alpha \right) = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha - {{\sin }^2}\alpha }&{\sin \alpha \cos \alpha + \cos \alpha \sin \alpha } \\
{ - (\sin \alpha \cos \alpha + \cos \alpha \sin \alpha )}&{{{\cos }^2}\alpha - {{\sin }^2}\alpha }
\end{array}} \right]\]
We know that ,
Double angle formula of sin function and cos function is given as :
\[\sin 2x = 2\sin x\cos x\]
\[\cos 2x = {\cos ^2}x - {\sin ^2}x\]
Using the double angle formula , we get
${A^2}(\alpha ) = \left( {\begin{array}{*{20}{c}}
{cos2\alpha }&{sin2\alpha } \\
{ - sin2\alpha }&{cos2\alpha }
\end{array}} \right)$
From above relation , we get
${A^2}(\alpha ) = A(2\alpha )$
Thus , the value of \[{A^2}\left( \alpha \right)\]is \[A\left( {2\alpha } \right)\]
Hence , the correct option is \[\left( 1 \right)\].
Note: The properties of multiplication of matrices :
(1) Associative Law :
For any three matrices \[A\] , \[B\] and \[C\] . We have\[\left( {AB} \right)C = A\left( {BC} \right)\], whenever both sides of the equality are defined .
(2) Distributive Law :
For any three matrices \[A\] , \[B\] and \[C\].
\[\left( i \right)\] \[A\left( {B + C} \right) = AB + AC\] , \[(ii)\] \[\left( {A + B} \right)C = AC + BC\] whenever both sides of equality are defined .
(3) The existence of multiplicative identity :
For every square matrix \[A\], there exists an identity matrix of the same order such that \[IA = AI = A\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

