
If we have a inverse trigonometric equation as ${{\tan }^{-1}}\left( \dfrac{x-2}{x-4} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+4} \right)=\dfrac{\pi }{4}$, then find the value of x.
Answer
510.6k+ views
Hint: Use the formula: ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$ to convert the two given tan inverse functions into a single tan inverse function. The next step is to take tangent function on both the sides of the equation and use the formula: \[\tan ({{\tan }^{-1}}x)=x\], on the L.H.S. On the R.H.S use, \[\tan \dfrac{\pi }{4}=1\]. Now, solve the obtained quadratic equation to get the value of ‘x’.
Complete step-by-step solution -
We have been given: ${{\tan }^{-1}}\left( \dfrac{x-2}{x-4} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+4} \right)=\dfrac{\pi }{4}$
Applying the formula: ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$, we get,
${{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{x-2}{x-4} \right)+\left( \dfrac{x+2}{x+4} \right)}{1-\left( \dfrac{x-2}{x-4} \right)\left( \dfrac{x+2}{x+4} \right)} \right]=\dfrac{\pi }{4}$
Taking L.C.M in the numerator, we get,
${{\tan }^{-1}}\left[ \dfrac{\dfrac{\left( x-2 \right)\left( x+4 \right)+\left( x+2 \right)\left( x-4 \right)}{\left( x-4 \right)\left( x+4 \right)}}{1-\dfrac{\left( x-2 \right)\left( x+2 \right)}{\left( x-4 \right)\left( x+4 \right)}} \right]=\dfrac{\pi }{4}$
Now, using the algebraic identity: $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$, we get,
\[{{\tan }^{-1}}\left[ \dfrac{\dfrac{{{x}^{2}}+4x-2x-8+{{x}^{2}}-4x+2x-8}{{{x}^{2}}-16}}{1-\dfrac{{{x}^{2}}-4}{{{x}^{2}}-16}} \right]=\dfrac{\pi }{4}\]
Taking L.C.M in the denominator, we get,
\[\begin{align}
& {{\tan }^{-1}}\left[ \dfrac{\dfrac{{{x}^{2}}+4x-2x-8+{{x}^{2}}-4x+2x-8}{{{x}^{2}}-16}}{\dfrac{{{x}^{2}}-16-\left( {{x}^{2}}-4 \right)}{{{x}^{2}}-16}} \right]=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{\dfrac{2{{x}^{2}}-16}{{{x}^{2}}-16}}{\dfrac{{{x}^{2}}-16-{{x}^{2}}+4}{{{x}^{2}}-16}} \right]=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{\dfrac{2{{x}^{2}}-16}{{{x}^{2}}-16}}{\dfrac{-12}{{{x}^{2}}-16}} \right]=\dfrac{\pi }{4} \\
\end{align}\]
Cancelling the common terms, we get,
\[\Rightarrow {{\tan }^{-1}}\left[ \dfrac{2{{x}^{2}}-16}{-12} \right]=\dfrac{\pi }{4}\]
Taking tangent function both the sides, we get,
\[\Rightarrow \tan \left[ {{\tan }^{-1}}\left[ \dfrac{2{{x}^{2}}-16}{-12} \right] \right]=\tan \dfrac{\pi }{4}\]
Applying the formula, \[\tan ({{\tan }^{-1}}x)=x\] and using the value, \[\tan \dfrac{\pi }{4}=1\], we get,
\[\dfrac{2{{x}^{2}}-16}{-12}=1\]
By cross-multiplication, we get,
\[\begin{align}
& 2{{x}^{2}}-16=-12 \\
& \Rightarrow 2{{x}^{2}}=16-12 \\
& \Rightarrow 2{{x}^{2}}=4 \\
& \Rightarrow {{x}^{2}}=2 \\
\end{align}\]
Taking square root both sides, we get,
$x=\pm \sqrt{2}$
Note: One may note that we cannot remove the two tan inverse functions directly by taking tangent function both sides at the first step. That is a wrong approach. First, we must convert it to a single tan inverse function and then take the tangent function to both sides. Never try to convert the given tan inverse function into sine or cosine inverse function because it will make the equation much complicated.
Complete step-by-step solution -
We have been given: ${{\tan }^{-1}}\left( \dfrac{x-2}{x-4} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+4} \right)=\dfrac{\pi }{4}$
Applying the formula: ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$, we get,
${{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{x-2}{x-4} \right)+\left( \dfrac{x+2}{x+4} \right)}{1-\left( \dfrac{x-2}{x-4} \right)\left( \dfrac{x+2}{x+4} \right)} \right]=\dfrac{\pi }{4}$
Taking L.C.M in the numerator, we get,
${{\tan }^{-1}}\left[ \dfrac{\dfrac{\left( x-2 \right)\left( x+4 \right)+\left( x+2 \right)\left( x-4 \right)}{\left( x-4 \right)\left( x+4 \right)}}{1-\dfrac{\left( x-2 \right)\left( x+2 \right)}{\left( x-4 \right)\left( x+4 \right)}} \right]=\dfrac{\pi }{4}$
Now, using the algebraic identity: $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$, we get,
\[{{\tan }^{-1}}\left[ \dfrac{\dfrac{{{x}^{2}}+4x-2x-8+{{x}^{2}}-4x+2x-8}{{{x}^{2}}-16}}{1-\dfrac{{{x}^{2}}-4}{{{x}^{2}}-16}} \right]=\dfrac{\pi }{4}\]
Taking L.C.M in the denominator, we get,
\[\begin{align}
& {{\tan }^{-1}}\left[ \dfrac{\dfrac{{{x}^{2}}+4x-2x-8+{{x}^{2}}-4x+2x-8}{{{x}^{2}}-16}}{\dfrac{{{x}^{2}}-16-\left( {{x}^{2}}-4 \right)}{{{x}^{2}}-16}} \right]=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{\dfrac{2{{x}^{2}}-16}{{{x}^{2}}-16}}{\dfrac{{{x}^{2}}-16-{{x}^{2}}+4}{{{x}^{2}}-16}} \right]=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{\dfrac{2{{x}^{2}}-16}{{{x}^{2}}-16}}{\dfrac{-12}{{{x}^{2}}-16}} \right]=\dfrac{\pi }{4} \\
\end{align}\]
Cancelling the common terms, we get,
\[\Rightarrow {{\tan }^{-1}}\left[ \dfrac{2{{x}^{2}}-16}{-12} \right]=\dfrac{\pi }{4}\]
Taking tangent function both the sides, we get,
\[\Rightarrow \tan \left[ {{\tan }^{-1}}\left[ \dfrac{2{{x}^{2}}-16}{-12} \right] \right]=\tan \dfrac{\pi }{4}\]
Applying the formula, \[\tan ({{\tan }^{-1}}x)=x\] and using the value, \[\tan \dfrac{\pi }{4}=1\], we get,
\[\dfrac{2{{x}^{2}}-16}{-12}=1\]
By cross-multiplication, we get,
\[\begin{align}
& 2{{x}^{2}}-16=-12 \\
& \Rightarrow 2{{x}^{2}}=16-12 \\
& \Rightarrow 2{{x}^{2}}=4 \\
& \Rightarrow {{x}^{2}}=2 \\
\end{align}\]
Taking square root both sides, we get,
$x=\pm \sqrt{2}$
Note: One may note that we cannot remove the two tan inverse functions directly by taking tangent function both sides at the first step. That is a wrong approach. First, we must convert it to a single tan inverse function and then take the tangent function to both sides. Never try to convert the given tan inverse function into sine or cosine inverse function because it will make the equation much complicated.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
