
If we have a inverse trigonometric equation as ${{\tan }^{-1}}\left( \dfrac{x-2}{x-4} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+4} \right)=\dfrac{\pi }{4}$, then find the value of x.
Answer
594.9k+ views
Hint: Use the formula: ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$ to convert the two given tan inverse functions into a single tan inverse function. The next step is to take tangent function on both the sides of the equation and use the formula: \[\tan ({{\tan }^{-1}}x)=x\], on the L.H.S. On the R.H.S use, \[\tan \dfrac{\pi }{4}=1\]. Now, solve the obtained quadratic equation to get the value of ‘x’.
Complete step-by-step solution -
We have been given: ${{\tan }^{-1}}\left( \dfrac{x-2}{x-4} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+4} \right)=\dfrac{\pi }{4}$
Applying the formula: ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$, we get,
${{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{x-2}{x-4} \right)+\left( \dfrac{x+2}{x+4} \right)}{1-\left( \dfrac{x-2}{x-4} \right)\left( \dfrac{x+2}{x+4} \right)} \right]=\dfrac{\pi }{4}$
Taking L.C.M in the numerator, we get,
${{\tan }^{-1}}\left[ \dfrac{\dfrac{\left( x-2 \right)\left( x+4 \right)+\left( x+2 \right)\left( x-4 \right)}{\left( x-4 \right)\left( x+4 \right)}}{1-\dfrac{\left( x-2 \right)\left( x+2 \right)}{\left( x-4 \right)\left( x+4 \right)}} \right]=\dfrac{\pi }{4}$
Now, using the algebraic identity: $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$, we get,
\[{{\tan }^{-1}}\left[ \dfrac{\dfrac{{{x}^{2}}+4x-2x-8+{{x}^{2}}-4x+2x-8}{{{x}^{2}}-16}}{1-\dfrac{{{x}^{2}}-4}{{{x}^{2}}-16}} \right]=\dfrac{\pi }{4}\]
Taking L.C.M in the denominator, we get,
\[\begin{align}
& {{\tan }^{-1}}\left[ \dfrac{\dfrac{{{x}^{2}}+4x-2x-8+{{x}^{2}}-4x+2x-8}{{{x}^{2}}-16}}{\dfrac{{{x}^{2}}-16-\left( {{x}^{2}}-4 \right)}{{{x}^{2}}-16}} \right]=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{\dfrac{2{{x}^{2}}-16}{{{x}^{2}}-16}}{\dfrac{{{x}^{2}}-16-{{x}^{2}}+4}{{{x}^{2}}-16}} \right]=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{\dfrac{2{{x}^{2}}-16}{{{x}^{2}}-16}}{\dfrac{-12}{{{x}^{2}}-16}} \right]=\dfrac{\pi }{4} \\
\end{align}\]
Cancelling the common terms, we get,
\[\Rightarrow {{\tan }^{-1}}\left[ \dfrac{2{{x}^{2}}-16}{-12} \right]=\dfrac{\pi }{4}\]
Taking tangent function both the sides, we get,
\[\Rightarrow \tan \left[ {{\tan }^{-1}}\left[ \dfrac{2{{x}^{2}}-16}{-12} \right] \right]=\tan \dfrac{\pi }{4}\]
Applying the formula, \[\tan ({{\tan }^{-1}}x)=x\] and using the value, \[\tan \dfrac{\pi }{4}=1\], we get,
\[\dfrac{2{{x}^{2}}-16}{-12}=1\]
By cross-multiplication, we get,
\[\begin{align}
& 2{{x}^{2}}-16=-12 \\
& \Rightarrow 2{{x}^{2}}=16-12 \\
& \Rightarrow 2{{x}^{2}}=4 \\
& \Rightarrow {{x}^{2}}=2 \\
\end{align}\]
Taking square root both sides, we get,
$x=\pm \sqrt{2}$
Note: One may note that we cannot remove the two tan inverse functions directly by taking tangent function both sides at the first step. That is a wrong approach. First, we must convert it to a single tan inverse function and then take the tangent function to both sides. Never try to convert the given tan inverse function into sine or cosine inverse function because it will make the equation much complicated.
Complete step-by-step solution -
We have been given: ${{\tan }^{-1}}\left( \dfrac{x-2}{x-4} \right)+{{\tan }^{-1}}\left( \dfrac{x+2}{x+4} \right)=\dfrac{\pi }{4}$
Applying the formula: ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$, we get,
${{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{x-2}{x-4} \right)+\left( \dfrac{x+2}{x+4} \right)}{1-\left( \dfrac{x-2}{x-4} \right)\left( \dfrac{x+2}{x+4} \right)} \right]=\dfrac{\pi }{4}$
Taking L.C.M in the numerator, we get,
${{\tan }^{-1}}\left[ \dfrac{\dfrac{\left( x-2 \right)\left( x+4 \right)+\left( x+2 \right)\left( x-4 \right)}{\left( x-4 \right)\left( x+4 \right)}}{1-\dfrac{\left( x-2 \right)\left( x+2 \right)}{\left( x-4 \right)\left( x+4 \right)}} \right]=\dfrac{\pi }{4}$
Now, using the algebraic identity: $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$, we get,
\[{{\tan }^{-1}}\left[ \dfrac{\dfrac{{{x}^{2}}+4x-2x-8+{{x}^{2}}-4x+2x-8}{{{x}^{2}}-16}}{1-\dfrac{{{x}^{2}}-4}{{{x}^{2}}-16}} \right]=\dfrac{\pi }{4}\]
Taking L.C.M in the denominator, we get,
\[\begin{align}
& {{\tan }^{-1}}\left[ \dfrac{\dfrac{{{x}^{2}}+4x-2x-8+{{x}^{2}}-4x+2x-8}{{{x}^{2}}-16}}{\dfrac{{{x}^{2}}-16-\left( {{x}^{2}}-4 \right)}{{{x}^{2}}-16}} \right]=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{\dfrac{2{{x}^{2}}-16}{{{x}^{2}}-16}}{\dfrac{{{x}^{2}}-16-{{x}^{2}}+4}{{{x}^{2}}-16}} \right]=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{\dfrac{2{{x}^{2}}-16}{{{x}^{2}}-16}}{\dfrac{-12}{{{x}^{2}}-16}} \right]=\dfrac{\pi }{4} \\
\end{align}\]
Cancelling the common terms, we get,
\[\Rightarrow {{\tan }^{-1}}\left[ \dfrac{2{{x}^{2}}-16}{-12} \right]=\dfrac{\pi }{4}\]
Taking tangent function both the sides, we get,
\[\Rightarrow \tan \left[ {{\tan }^{-1}}\left[ \dfrac{2{{x}^{2}}-16}{-12} \right] \right]=\tan \dfrac{\pi }{4}\]
Applying the formula, \[\tan ({{\tan }^{-1}}x)=x\] and using the value, \[\tan \dfrac{\pi }{4}=1\], we get,
\[\dfrac{2{{x}^{2}}-16}{-12}=1\]
By cross-multiplication, we get,
\[\begin{align}
& 2{{x}^{2}}-16=-12 \\
& \Rightarrow 2{{x}^{2}}=16-12 \\
& \Rightarrow 2{{x}^{2}}=4 \\
& \Rightarrow {{x}^{2}}=2 \\
\end{align}\]
Taking square root both sides, we get,
$x=\pm \sqrt{2}$
Note: One may note that we cannot remove the two tan inverse functions directly by taking tangent function both sides at the first step. That is a wrong approach. First, we must convert it to a single tan inverse function and then take the tangent function to both sides. Never try to convert the given tan inverse function into sine or cosine inverse function because it will make the equation much complicated.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

