
If we have a function as \[{{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{.....}^{\infty }}}}}}}}\], then \[\dfrac{dy}{dx}\] is equal to
(a) \[-\dfrac{{{y}^{2}}\tan x}{1-y\ln \left( \cos x \right)}\]
(b) \[\dfrac{{{y}^{2}}\tan x}{1+y\ln \left( \cos x \right)}\]
(c) \[\dfrac{{{y}^{2}}\tan x}{1-y\ln \left( \sin x \right)}\]
(d) \[\dfrac{{{y}^{2}}\sin x}{1+y\ln \left( \sin x \right)}\]
Answer
574.8k+ views
Hint: Take natural log, i.e. log to the base ‘e’, on both sides of the expression y. Write the expression as \[\ln y=y\ln \left( \cos x \right)\] by using the formula: - \[\ln {{a}^{m}}=m\ln a\]. Now, differentiate both sides of the function and use the formula: - \[\dfrac{d\ln y}{dx}=\dfrac{1}{y}\left( \dfrac{dy}{dx} \right)\] on the left-hand side. One the right-hand side apply product rule for differentiation given as: - \[\dfrac{d\left( u\times v \right)}{dx}=v\times \dfrac{du}{dx}+u\times \dfrac{dv}{dx}\], where u and v are the functions. Simplify the expression and find the value of \[\dfrac{dy}{dx}\].
Complete step-by-step solution
We have been provided with the expression: -
\[\Rightarrow y={{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{.....}^{\infty }}}}}}}}\] - (1)
This is an infinite series, so on taking natural log (log to the base ‘e’) on both sides, we get,
\[\Rightarrow \ln y=\ln {{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{.....}^{\infty }}}}}}}}\]
Applying the formula: - \[\ln {{a}^{m}}=m\ln a\], we get,
\[\Rightarrow \ln y={{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{.....}^{\infty }}}}}}}}\ln \left( \cos x \right)\]
Using equation (1), we can write the above expression as: -
\[\Rightarrow \ln y=y\ln \left( \cos x \right)\]
Now, differentiating both sides with respect to x, we get,
\[\Rightarrow \dfrac{d\left[ \ln y \right]}{dx}=\dfrac{d\left( y\ln \left( \cos x \right) \right)}{dx}\]
In the R.H.S, we have a product of two functions y and \[\ln \left( \cos x \right)\]. Assuming them as u and v respectively, we will get the differential of the form: -
\[\Rightarrow \dfrac{d\left( \ln y \right)}{dx}=\dfrac{d\left( u\times v \right)}{dx}\]
Applying the product rule for differentiation given as: - \[\dfrac{d\left( u\times v \right)}{dx}=v\times \dfrac{du}{dx}+u\times \dfrac{dv}{dx}\], we get,
\[\Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=v\times \dfrac{du}{dx}+u\times \dfrac{dv}{dx}\]
Substituting the assumed values of u and v, we get,
\[\Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=\ln \left( \cos x \right)\times \dfrac{dy}{dx}+y\times \dfrac{d\ln \left( \cos x \right)}{dx}\]
Applying the chain rule for the term, \[\dfrac{d\ln \left( \cos x \right)}{dx}\], we have,
\[\begin{align}
& \Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=\ln \left( \cos x \right)\times \dfrac{dy}{dx}+y\times \dfrac{d\ln \left( \cos x \right)}{d\cos x}\times \dfrac{d\cos x}{dx} \\
& \Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=\dfrac{dy}{dx}\ln \left( \cos x \right)+y\times \dfrac{1}{\cos x}\times \left( -\sin x \right) \\
& \Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=\dfrac{dy}{dx}\ln \left( \cos x \right)-y\left( \dfrac{\sin x}{\cos x} \right) \\
\end{align}\]
Applying the conversion, \[\dfrac{\sin \theta }{\cos \theta }=\tan \theta \], we get,
\[\begin{align}
& \Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=\dfrac{dy}{dx}\ln \left( \cos x \right)-y\tan x \\
& \Rightarrow {y}\tan x=\dfrac{dy}{dx}\ln \left( \cos x \right)-\dfrac{1}{y}\left( \dfrac{dy}{dx} \right) \\
\end{align}\]
Taking \[\left( \dfrac{dy}{dx} \right)\] common in the R.H.S, we get,
\[\Rightarrow {y}\tan x=\dfrac{dy}{dx}\left[ \ln \left( \cos x \right)-\dfrac{1}{y} \right]\]
\[\Rightarrow {y}\tan x=\dfrac{dy}{dx}\left[ \dfrac{y\ln \left( \cos x \right)-1}{y} \right]\]
By cross – multiplication, we get,
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{{{y}^{2}}\tan x}{y\ln \left( \cos x \right)-1} \\
& \Rightarrow \dfrac{dy}{dx}=-\dfrac{{{y}^{2}}\tan x}{1-y\ln \left( \cos x \right)} \\
\end{align}\]
Hence, option (a) is the correct answer.
Note: One must remember how to convert an infinite series into a simple form because we will not be able to solve the question without using the above process. You can also write the function as, \[y={{\left( \cos x \right)}^{y}}\] but then also when we take the log on both sides, we will get the same expression. You have to take all the terms of \[\dfrac{dy}{dx}\] at one side and then take \[\dfrac{dy}{dx}\] common from them because if any of the term containing \[\dfrac{dy}{dx}\] is left then we will get the answer in terms of \[\dfrac{dy}{dx}\], which will not be a simplified form.
Complete step-by-step solution
We have been provided with the expression: -
\[\Rightarrow y={{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{.....}^{\infty }}}}}}}}\] - (1)
This is an infinite series, so on taking natural log (log to the base ‘e’) on both sides, we get,
\[\Rightarrow \ln y=\ln {{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{.....}^{\infty }}}}}}}}\]
Applying the formula: - \[\ln {{a}^{m}}=m\ln a\], we get,
\[\Rightarrow \ln y={{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{\left( \cos x \right)}^{{{.....}^{\infty }}}}}}}}\ln \left( \cos x \right)\]
Using equation (1), we can write the above expression as: -
\[\Rightarrow \ln y=y\ln \left( \cos x \right)\]
Now, differentiating both sides with respect to x, we get,
\[\Rightarrow \dfrac{d\left[ \ln y \right]}{dx}=\dfrac{d\left( y\ln \left( \cos x \right) \right)}{dx}\]
In the R.H.S, we have a product of two functions y and \[\ln \left( \cos x \right)\]. Assuming them as u and v respectively, we will get the differential of the form: -
\[\Rightarrow \dfrac{d\left( \ln y \right)}{dx}=\dfrac{d\left( u\times v \right)}{dx}\]
Applying the product rule for differentiation given as: - \[\dfrac{d\left( u\times v \right)}{dx}=v\times \dfrac{du}{dx}+u\times \dfrac{dv}{dx}\], we get,
\[\Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=v\times \dfrac{du}{dx}+u\times \dfrac{dv}{dx}\]
Substituting the assumed values of u and v, we get,
\[\Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=\ln \left( \cos x \right)\times \dfrac{dy}{dx}+y\times \dfrac{d\ln \left( \cos x \right)}{dx}\]
Applying the chain rule for the term, \[\dfrac{d\ln \left( \cos x \right)}{dx}\], we have,
\[\begin{align}
& \Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=\ln \left( \cos x \right)\times \dfrac{dy}{dx}+y\times \dfrac{d\ln \left( \cos x \right)}{d\cos x}\times \dfrac{d\cos x}{dx} \\
& \Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=\dfrac{dy}{dx}\ln \left( \cos x \right)+y\times \dfrac{1}{\cos x}\times \left( -\sin x \right) \\
& \Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=\dfrac{dy}{dx}\ln \left( \cos x \right)-y\left( \dfrac{\sin x}{\cos x} \right) \\
\end{align}\]
Applying the conversion, \[\dfrac{\sin \theta }{\cos \theta }=\tan \theta \], we get,
\[\begin{align}
& \Rightarrow \dfrac{1}{y}\left( \dfrac{dy}{dx} \right)=\dfrac{dy}{dx}\ln \left( \cos x \right)-y\tan x \\
& \Rightarrow {y}\tan x=\dfrac{dy}{dx}\ln \left( \cos x \right)-\dfrac{1}{y}\left( \dfrac{dy}{dx} \right) \\
\end{align}\]
Taking \[\left( \dfrac{dy}{dx} \right)\] common in the R.H.S, we get,
\[\Rightarrow {y}\tan x=\dfrac{dy}{dx}\left[ \ln \left( \cos x \right)-\dfrac{1}{y} \right]\]
\[\Rightarrow {y}\tan x=\dfrac{dy}{dx}\left[ \dfrac{y\ln \left( \cos x \right)-1}{y} \right]\]
By cross – multiplication, we get,
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{{{y}^{2}}\tan x}{y\ln \left( \cos x \right)-1} \\
& \Rightarrow \dfrac{dy}{dx}=-\dfrac{{{y}^{2}}\tan x}{1-y\ln \left( \cos x \right)} \\
\end{align}\]
Hence, option (a) is the correct answer.
Note: One must remember how to convert an infinite series into a simple form because we will not be able to solve the question without using the above process. You can also write the function as, \[y={{\left( \cos x \right)}^{y}}\] but then also when we take the log on both sides, we will get the same expression. You have to take all the terms of \[\dfrac{dy}{dx}\] at one side and then take \[\dfrac{dy}{dx}\] common from them because if any of the term containing \[\dfrac{dy}{dx}\] is left then we will get the answer in terms of \[\dfrac{dy}{dx}\], which will not be a simplified form.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

