
If we have a function as $A = \dfrac{{{2^x}\cot x}}{{\sqrt x }}$, then $\dfrac{{dA}}{{dx}}$ is equal to:
(A) $\dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]$
(B) $\dfrac{{{2^x}}}{x}\left[ {\log 2\cot x + \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]$
(C) $\dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x + \dfrac{{\cot x}}{{2x}}} \right]$
(D) None of these
Answer
491.1k+ views
Hint: In the given problem, we are required to differentiate $A = \dfrac{{{2^x}\cot x}}{{\sqrt x }}$ with respect to x. Since, $A = \dfrac{{{2^x}\cot x}}{{\sqrt x }}$ is a rational function in variable x, so we will have to apply quotient rule of differentiation in the process of differentiating the function in x . Also derivatives of basic algebraic and trigonometric functions must be remembered thoroughly. We also must know the product rule and quotient rule of differentiation to solve the given problem.
Complete step-by-step solution:
Now, $\left( {\dfrac{{dA}}{{dx}}} \right) = \dfrac{d}{{dx}}\left[ {\dfrac{{{2^x}\cot x}}{{\sqrt x }}} \right]$ .
Now, using the quotient rule of differentiation, we know that $\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$ .
So, Applying quotient rule to $\dfrac{d}{{dx}}\left[ {\dfrac{{{2^x}\cot x}}{{\sqrt x }}} \right]$, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \dfrac{d}{{dx}}\left( {{2^x}\cot x} \right) - \left( {{2^x}\cot x} \right)\dfrac{d}{{dx}}\left( {\sqrt x } \right)}}{{{{\left( {\sqrt x } \right)}^2}}}\]
Substituting the derivative of \[\sqrt x \] with respect to x as $\dfrac{1}{{2\sqrt x }}$,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \dfrac{d}{{dx}}\left( {{2^x}\cot x} \right) - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Now, applying product rule of differentiation $\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) + f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)$, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \left[ {{2^x} \times \dfrac{d}{{dx}}\left( {\cot x} \right) + \cot x \times \dfrac{d}{{dx}}\left( {{2^x}} \right)} \right] - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Now, we know that the derivative of \[\cot x\] is \[\left( { - \cos e{c^2}x} \right)\]. Also, the derivative of ${2^x}$ with respect to x is ${2^x}\log 2$. So, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \left[ { - {2^x}\cos e{c^2}x + \cot x \times \left( {{2^x}\log 2} \right)} \right] - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Simplifying the expression, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{ - {2^x}\sqrt x \cos e{c^2}x + \sqrt x \cot x\left( {{2^x}\log 2} \right) - \dfrac{{\left( {{2^x}\cot x} \right)}}{{2\sqrt x }}}}{x}\]
Taking ${2^x}$ common from all the terms,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}\left[ { - \sqrt x \cos e{c^2}x + \sqrt x \cot x\log 2 - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x }}} \right]}}{x}\]
Now, we know that $\sqrt x \times \sqrt x = x$. So, expressing denominator in form of product, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}\left[ { - \sqrt x \cos e{c^2}x + \sqrt x \cot x\log 2 - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x }}} \right]}}{{\sqrt x \times \sqrt x }}\]
Dividing the entire numerator by \[\sqrt x \], we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}}}{{\sqrt x }}\left[ { - \dfrac{{\sqrt x \cos e{c^2}x}}{{\sqrt x }} + \dfrac{{\sqrt x \cot x\log 2}}{{\sqrt x }} - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x \times \sqrt x }}} \right]\]
Cancelling common factors in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]\]
Therefore, the derivative of $A = \dfrac{{{2^x}\cot x}}{{\sqrt x }}$ with respect to x is $\dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]$.
Hence, option (A) is the correct answer.
Note: The product rule of differentiation involves differentiating a product of two functions and the quotient rule of differentiation involves differentiating a rational function. We must know both of these to solve the given problem. One must know derivatives of some basic functions such as trigonometric and power functions in order to tackle such problems.
Complete step-by-step solution:
Now, $\left( {\dfrac{{dA}}{{dx}}} \right) = \dfrac{d}{{dx}}\left[ {\dfrac{{{2^x}\cot x}}{{\sqrt x }}} \right]$ .
Now, using the quotient rule of differentiation, we know that $\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$ .
So, Applying quotient rule to $\dfrac{d}{{dx}}\left[ {\dfrac{{{2^x}\cot x}}{{\sqrt x }}} \right]$, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \dfrac{d}{{dx}}\left( {{2^x}\cot x} \right) - \left( {{2^x}\cot x} \right)\dfrac{d}{{dx}}\left( {\sqrt x } \right)}}{{{{\left( {\sqrt x } \right)}^2}}}\]
Substituting the derivative of \[\sqrt x \] with respect to x as $\dfrac{1}{{2\sqrt x }}$,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \dfrac{d}{{dx}}\left( {{2^x}\cot x} \right) - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Now, applying product rule of differentiation $\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) + f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)$, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \left[ {{2^x} \times \dfrac{d}{{dx}}\left( {\cot x} \right) + \cot x \times \dfrac{d}{{dx}}\left( {{2^x}} \right)} \right] - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Now, we know that the derivative of \[\cot x\] is \[\left( { - \cos e{c^2}x} \right)\]. Also, the derivative of ${2^x}$ with respect to x is ${2^x}\log 2$. So, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \left[ { - {2^x}\cos e{c^2}x + \cot x \times \left( {{2^x}\log 2} \right)} \right] - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Simplifying the expression, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{ - {2^x}\sqrt x \cos e{c^2}x + \sqrt x \cot x\left( {{2^x}\log 2} \right) - \dfrac{{\left( {{2^x}\cot x} \right)}}{{2\sqrt x }}}}{x}\]
Taking ${2^x}$ common from all the terms,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}\left[ { - \sqrt x \cos e{c^2}x + \sqrt x \cot x\log 2 - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x }}} \right]}}{x}\]
Now, we know that $\sqrt x \times \sqrt x = x$. So, expressing denominator in form of product, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}\left[ { - \sqrt x \cos e{c^2}x + \sqrt x \cot x\log 2 - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x }}} \right]}}{{\sqrt x \times \sqrt x }}\]
Dividing the entire numerator by \[\sqrt x \], we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}}}{{\sqrt x }}\left[ { - \dfrac{{\sqrt x \cos e{c^2}x}}{{\sqrt x }} + \dfrac{{\sqrt x \cot x\log 2}}{{\sqrt x }} - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x \times \sqrt x }}} \right]\]
Cancelling common factors in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]\]
Therefore, the derivative of $A = \dfrac{{{2^x}\cot x}}{{\sqrt x }}$ with respect to x is $\dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]$.
Hence, option (A) is the correct answer.
Note: The product rule of differentiation involves differentiating a product of two functions and the quotient rule of differentiation involves differentiating a rational function. We must know both of these to solve the given problem. One must know derivatives of some basic functions such as trigonometric and power functions in order to tackle such problems.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

When was the first election held in India a 194748 class 12 sst CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

Prove that a parallelogram circumscribing a circle-class-12-maths-CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

