
If we have a function as $A = \dfrac{{{2^x}\cot x}}{{\sqrt x }}$, then $\dfrac{{dA}}{{dx}}$ is equal to:
(A) $\dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]$
(B) $\dfrac{{{2^x}}}{x}\left[ {\log 2\cot x + \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]$
(C) $\dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x + \dfrac{{\cot x}}{{2x}}} \right]$
(D) None of these
Answer
481.2k+ views
Hint: In the given problem, we are required to differentiate $A = \dfrac{{{2^x}\cot x}}{{\sqrt x }}$ with respect to x. Since, $A = \dfrac{{{2^x}\cot x}}{{\sqrt x }}$ is a rational function in variable x, so we will have to apply quotient rule of differentiation in the process of differentiating the function in x . Also derivatives of basic algebraic and trigonometric functions must be remembered thoroughly. We also must know the product rule and quotient rule of differentiation to solve the given problem.
Complete step-by-step solution:
Now, $\left( {\dfrac{{dA}}{{dx}}} \right) = \dfrac{d}{{dx}}\left[ {\dfrac{{{2^x}\cot x}}{{\sqrt x }}} \right]$ .
Now, using the quotient rule of differentiation, we know that $\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$ .
So, Applying quotient rule to $\dfrac{d}{{dx}}\left[ {\dfrac{{{2^x}\cot x}}{{\sqrt x }}} \right]$, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \dfrac{d}{{dx}}\left( {{2^x}\cot x} \right) - \left( {{2^x}\cot x} \right)\dfrac{d}{{dx}}\left( {\sqrt x } \right)}}{{{{\left( {\sqrt x } \right)}^2}}}\]
Substituting the derivative of \[\sqrt x \] with respect to x as $\dfrac{1}{{2\sqrt x }}$,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \dfrac{d}{{dx}}\left( {{2^x}\cot x} \right) - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Now, applying product rule of differentiation $\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) + f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)$, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \left[ {{2^x} \times \dfrac{d}{{dx}}\left( {\cot x} \right) + \cot x \times \dfrac{d}{{dx}}\left( {{2^x}} \right)} \right] - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Now, we know that the derivative of \[\cot x\] is \[\left( { - \cos e{c^2}x} \right)\]. Also, the derivative of ${2^x}$ with respect to x is ${2^x}\log 2$. So, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \left[ { - {2^x}\cos e{c^2}x + \cot x \times \left( {{2^x}\log 2} \right)} \right] - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Simplifying the expression, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{ - {2^x}\sqrt x \cos e{c^2}x + \sqrt x \cot x\left( {{2^x}\log 2} \right) - \dfrac{{\left( {{2^x}\cot x} \right)}}{{2\sqrt x }}}}{x}\]
Taking ${2^x}$ common from all the terms,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}\left[ { - \sqrt x \cos e{c^2}x + \sqrt x \cot x\log 2 - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x }}} \right]}}{x}\]
Now, we know that $\sqrt x \times \sqrt x = x$. So, expressing denominator in form of product, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}\left[ { - \sqrt x \cos e{c^2}x + \sqrt x \cot x\log 2 - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x }}} \right]}}{{\sqrt x \times \sqrt x }}\]
Dividing the entire numerator by \[\sqrt x \], we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}}}{{\sqrt x }}\left[ { - \dfrac{{\sqrt x \cos e{c^2}x}}{{\sqrt x }} + \dfrac{{\sqrt x \cot x\log 2}}{{\sqrt x }} - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x \times \sqrt x }}} \right]\]
Cancelling common factors in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]\]
Therefore, the derivative of $A = \dfrac{{{2^x}\cot x}}{{\sqrt x }}$ with respect to x is $\dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]$.
Hence, option (A) is the correct answer.
Note: The product rule of differentiation involves differentiating a product of two functions and the quotient rule of differentiation involves differentiating a rational function. We must know both of these to solve the given problem. One must know derivatives of some basic functions such as trigonometric and power functions in order to tackle such problems.
Complete step-by-step solution:
Now, $\left( {\dfrac{{dA}}{{dx}}} \right) = \dfrac{d}{{dx}}\left[ {\dfrac{{{2^x}\cot x}}{{\sqrt x }}} \right]$ .
Now, using the quotient rule of differentiation, we know that $\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$ .
So, Applying quotient rule to $\dfrac{d}{{dx}}\left[ {\dfrac{{{2^x}\cot x}}{{\sqrt x }}} \right]$, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \dfrac{d}{{dx}}\left( {{2^x}\cot x} \right) - \left( {{2^x}\cot x} \right)\dfrac{d}{{dx}}\left( {\sqrt x } \right)}}{{{{\left( {\sqrt x } \right)}^2}}}\]
Substituting the derivative of \[\sqrt x \] with respect to x as $\dfrac{1}{{2\sqrt x }}$,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \dfrac{d}{{dx}}\left( {{2^x}\cot x} \right) - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Now, applying product rule of differentiation $\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) + f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)$, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \left[ {{2^x} \times \dfrac{d}{{dx}}\left( {\cot x} \right) + \cot x \times \dfrac{d}{{dx}}\left( {{2^x}} \right)} \right] - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Now, we know that the derivative of \[\cot x\] is \[\left( { - \cos e{c^2}x} \right)\]. Also, the derivative of ${2^x}$ with respect to x is ${2^x}\log 2$. So, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \left[ { - {2^x}\cos e{c^2}x + \cot x \times \left( {{2^x}\log 2} \right)} \right] - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Simplifying the expression, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{ - {2^x}\sqrt x \cos e{c^2}x + \sqrt x \cot x\left( {{2^x}\log 2} \right) - \dfrac{{\left( {{2^x}\cot x} \right)}}{{2\sqrt x }}}}{x}\]
Taking ${2^x}$ common from all the terms,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}\left[ { - \sqrt x \cos e{c^2}x + \sqrt x \cot x\log 2 - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x }}} \right]}}{x}\]
Now, we know that $\sqrt x \times \sqrt x = x$. So, expressing denominator in form of product, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}\left[ { - \sqrt x \cos e{c^2}x + \sqrt x \cot x\log 2 - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x }}} \right]}}{{\sqrt x \times \sqrt x }}\]
Dividing the entire numerator by \[\sqrt x \], we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}}}{{\sqrt x }}\left[ { - \dfrac{{\sqrt x \cos e{c^2}x}}{{\sqrt x }} + \dfrac{{\sqrt x \cot x\log 2}}{{\sqrt x }} - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x \times \sqrt x }}} \right]\]
Cancelling common factors in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]\]
Therefore, the derivative of $A = \dfrac{{{2^x}\cot x}}{{\sqrt x }}$ with respect to x is $\dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]$.
Hence, option (A) is the correct answer.
Note: The product rule of differentiation involves differentiating a product of two functions and the quotient rule of differentiation involves differentiating a rational function. We must know both of these to solve the given problem. One must know derivatives of some basic functions such as trigonometric and power functions in order to tackle such problems.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What does the Hymn Ek ONKAR SATNAM KARTA PURAKH NIRBHAU class 12 social science CBSE

How will you obtain OR AND gates from the NAND and class 12 physics CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

Write the differences between asexual and sexual r class 12 biology CBSE

Differentiate between exergonic and endergonic rea class 12 biology CBSE

How do you convert from joules to electron volts class 12 physics CBSE

