
If we have a function as $A = \dfrac{{{2^x}\cot x}}{{\sqrt x }}$, then $\dfrac{{dA}}{{dx}}$ is equal to:
(A) $\dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]$
(B) $\dfrac{{{2^x}}}{x}\left[ {\log 2\cot x + \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]$
(C) $\dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x + \dfrac{{\cot x}}{{2x}}} \right]$
(D) None of these
Answer
488.1k+ views
Hint: In the given problem, we are required to differentiate $A = \dfrac{{{2^x}\cot x}}{{\sqrt x }}$ with respect to x. Since, $A = \dfrac{{{2^x}\cot x}}{{\sqrt x }}$ is a rational function in variable x, so we will have to apply quotient rule of differentiation in the process of differentiating the function in x . Also derivatives of basic algebraic and trigonometric functions must be remembered thoroughly. We also must know the product rule and quotient rule of differentiation to solve the given problem.
Complete step-by-step solution:
Now, $\left( {\dfrac{{dA}}{{dx}}} \right) = \dfrac{d}{{dx}}\left[ {\dfrac{{{2^x}\cot x}}{{\sqrt x }}} \right]$ .
Now, using the quotient rule of differentiation, we know that $\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$ .
So, Applying quotient rule to $\dfrac{d}{{dx}}\left[ {\dfrac{{{2^x}\cot x}}{{\sqrt x }}} \right]$, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \dfrac{d}{{dx}}\left( {{2^x}\cot x} \right) - \left( {{2^x}\cot x} \right)\dfrac{d}{{dx}}\left( {\sqrt x } \right)}}{{{{\left( {\sqrt x } \right)}^2}}}\]
Substituting the derivative of \[\sqrt x \] with respect to x as $\dfrac{1}{{2\sqrt x }}$,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \dfrac{d}{{dx}}\left( {{2^x}\cot x} \right) - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Now, applying product rule of differentiation $\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) + f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)$, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \left[ {{2^x} \times \dfrac{d}{{dx}}\left( {\cot x} \right) + \cot x \times \dfrac{d}{{dx}}\left( {{2^x}} \right)} \right] - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Now, we know that the derivative of \[\cot x\] is \[\left( { - \cos e{c^2}x} \right)\]. Also, the derivative of ${2^x}$ with respect to x is ${2^x}\log 2$. So, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \left[ { - {2^x}\cos e{c^2}x + \cot x \times \left( {{2^x}\log 2} \right)} \right] - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Simplifying the expression, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{ - {2^x}\sqrt x \cos e{c^2}x + \sqrt x \cot x\left( {{2^x}\log 2} \right) - \dfrac{{\left( {{2^x}\cot x} \right)}}{{2\sqrt x }}}}{x}\]
Taking ${2^x}$ common from all the terms,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}\left[ { - \sqrt x \cos e{c^2}x + \sqrt x \cot x\log 2 - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x }}} \right]}}{x}\]
Now, we know that $\sqrt x \times \sqrt x = x$. So, expressing denominator in form of product, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}\left[ { - \sqrt x \cos e{c^2}x + \sqrt x \cot x\log 2 - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x }}} \right]}}{{\sqrt x \times \sqrt x }}\]
Dividing the entire numerator by \[\sqrt x \], we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}}}{{\sqrt x }}\left[ { - \dfrac{{\sqrt x \cos e{c^2}x}}{{\sqrt x }} + \dfrac{{\sqrt x \cot x\log 2}}{{\sqrt x }} - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x \times \sqrt x }}} \right]\]
Cancelling common factors in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]\]
Therefore, the derivative of $A = \dfrac{{{2^x}\cot x}}{{\sqrt x }}$ with respect to x is $\dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]$.
Hence, option (A) is the correct answer.
Note: The product rule of differentiation involves differentiating a product of two functions and the quotient rule of differentiation involves differentiating a rational function. We must know both of these to solve the given problem. One must know derivatives of some basic functions such as trigonometric and power functions in order to tackle such problems.
Complete step-by-step solution:
Now, $\left( {\dfrac{{dA}}{{dx}}} \right) = \dfrac{d}{{dx}}\left[ {\dfrac{{{2^x}\cot x}}{{\sqrt x }}} \right]$ .
Now, using the quotient rule of differentiation, we know that $\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$ .
So, Applying quotient rule to $\dfrac{d}{{dx}}\left[ {\dfrac{{{2^x}\cot x}}{{\sqrt x }}} \right]$, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \dfrac{d}{{dx}}\left( {{2^x}\cot x} \right) - \left( {{2^x}\cot x} \right)\dfrac{d}{{dx}}\left( {\sqrt x } \right)}}{{{{\left( {\sqrt x } \right)}^2}}}\]
Substituting the derivative of \[\sqrt x \] with respect to x as $\dfrac{1}{{2\sqrt x }}$,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \dfrac{d}{{dx}}\left( {{2^x}\cot x} \right) - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Now, applying product rule of differentiation $\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) + f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)$, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \left[ {{2^x} \times \dfrac{d}{{dx}}\left( {\cot x} \right) + \cot x \times \dfrac{d}{{dx}}\left( {{2^x}} \right)} \right] - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Now, we know that the derivative of \[\cot x\] is \[\left( { - \cos e{c^2}x} \right)\]. Also, the derivative of ${2^x}$ with respect to x is ${2^x}\log 2$. So, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{\sqrt x \left[ { - {2^x}\cos e{c^2}x + \cot x \times \left( {{2^x}\log 2} \right)} \right] - \left( {{2^x}\cot x} \right) \times \dfrac{1}{{2\sqrt x }}}}{x}\]
Simplifying the expression, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{ - {2^x}\sqrt x \cos e{c^2}x + \sqrt x \cot x\left( {{2^x}\log 2} \right) - \dfrac{{\left( {{2^x}\cot x} \right)}}{{2\sqrt x }}}}{x}\]
Taking ${2^x}$ common from all the terms,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}\left[ { - \sqrt x \cos e{c^2}x + \sqrt x \cot x\log 2 - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x }}} \right]}}{x}\]
Now, we know that $\sqrt x \times \sqrt x = x$. So, expressing denominator in form of product, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}\left[ { - \sqrt x \cos e{c^2}x + \sqrt x \cot x\log 2 - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x }}} \right]}}{{\sqrt x \times \sqrt x }}\]
Dividing the entire numerator by \[\sqrt x \], we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}}}{{\sqrt x }}\left[ { - \dfrac{{\sqrt x \cos e{c^2}x}}{{\sqrt x }} + \dfrac{{\sqrt x \cot x\log 2}}{{\sqrt x }} - \dfrac{{\left( {\cot x} \right)}}{{2\sqrt x \times \sqrt x }}} \right]\]
Cancelling common factors in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dA}}{{dx}} = \dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]\]
Therefore, the derivative of $A = \dfrac{{{2^x}\cot x}}{{\sqrt x }}$ with respect to x is $\dfrac{{{2^x}}}{{\sqrt x }}\left[ {\log 2\cot x - \cos e{c^2}x - \dfrac{{\cot x}}{{2x}}} \right]$.
Hence, option (A) is the correct answer.
Note: The product rule of differentiation involves differentiating a product of two functions and the quotient rule of differentiation involves differentiating a rational function. We must know both of these to solve the given problem. One must know derivatives of some basic functions such as trigonometric and power functions in order to tackle such problems.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

