
If we have a diagonal matrix \[A=diag\left( a,b,c \right)=\left[ \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right]\] such that \[abc\ne 0\] then \[{{A}^{-1}}=diag\left( \dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c} \right)=\left[ \begin{matrix}
\dfrac{1}{a} & 0 & 0 \\
0 & \dfrac{1}{b} & 0 \\
0 & 0 & \dfrac{1}{c} \\
\end{matrix} \right].\]
Answer
572.1k+ views
Hint: We are given a matrix A and we are asked to find the inverse of A. We know that \[{{A}^{-1}}\] is given as \[{{A}^{-1}}=\dfrac{Adj\left( A \right)}{\left| A \right|}.\] So, we will first find the determinant of A. We will expand along row 1 and we will find the determinant of A. Then to find the Adj (A) we will find the cofactor for each position once we have the cofactor, we get Adj (A), then put the value in \[{{A}^{-1}}=\dfrac{Adj\left( A \right)}{\left| A \right|}\] to get the inverse of A.
Complete step-by-step solution:
We are given a matrix A as \[\left[ \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right].\] We are asked to find the inverse of this matrix A. We are clearly seen that our matrix A is a diagonal matrix. We know that the inverse of any matrix is given as
\[{{A}^{-1}}=\dfrac{Adj\left( A \right)}{\left| A \right|}\]
So, we will first find the determinant of A.
\[\left| A \right|=\left[ \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right]\]
Expanding along row 1, we get,
\[\Rightarrow a\left( bc-0 \right)+0+0\]
\[\Rightarrow abc\]
We are given that
\[\Rightarrow abc\ne 0\left[ \text{As given} \right]\]
Now, |A| = abc which is not zero. So, the inverse exists.
Now, we have to find the adjoint of A. In order to find the adjoint of A, we will find all the cofactors. So,
\[{{C}_{11}}={{\left( -1 \right)}^{1+1}}\left[ bc-0 \right]\]
\[\Rightarrow {{C}_{11}}={{\left( -1 \right)}^{2}}bc\]
\[\Rightarrow {{C}_{11}}=bc\]
Similarly,
\[{{C}_{12}}={{\left( -1 \right)}^{1+2}}\left[ 0-0 \right]\]
\[\Rightarrow {{C}_{12}}=0\]
\[{{C}_{13}}={{\left( -1 \right)}^{1+3}}\left[ 0-0 \right]\]
\[\Rightarrow {{C}_{13}}=0\]
\[{{C}_{21}}={{\left( -1 \right)}^{2+1}}\left[ 0-0 \right]\]
\[\Rightarrow {{C}_{21}}={{\left( -1 \right)}^{3}}\left( 0 \right)\]
\[\Rightarrow {{C}_{21}}=0\]
Similarly, we find,
\[{{C}_{22}}={{\left( -1 \right)}^{2+2}}\left( ac-0 \right)\]
\[\Rightarrow {{C}_{22}}={{\left( -1 \right)}^{4}}ac\]
\[\Rightarrow {{C}_{22}}=ac\]
Now,
\[{{C}_{23}}={{\left( -1 \right)}^{2+3}}\left( 0+0 \right)\]
\[\Rightarrow {{C}_{23}}=0\]
Now, we will find the cofactor along the row three. So, we get,
\[{{C}_{31}}={{\left( -1 \right)}^{3+1}}\left( 0-0 \right)\]
\[\Rightarrow {{C}_{31}}=0\]
\[{{C}_{32}}={{\left( -1 \right)}^{3+2}}\left[ 0-0 \right]\]
\[\Rightarrow {{C}_{32}}=0\]
And lastly,
\[{{C}_{33}}={{\left( -1 \right)}^{3+3}}\left[ ab-0 \right]\]
\[\Rightarrow {{C}_{33}}={{\left( -1 \right)}^{6}}\left( ab \right)\]
\[\Rightarrow {{C}_{33}}=ab\]
So, using this cofactor, we get our adjoint as,
\[\left( Adj\text{ }A \right)=\left[ \begin{matrix}
bc & 0 & 0 \\
0 & ac & 0 \\
0 & 0 & ab \\
\end{matrix} \right]\]
So putting this adj A in the formula of \[{{A}^{-1}}.\] So, we get,
\[{{A}^{-1}}=\dfrac{Adj\left( A \right)}{\left| A \right|}\]
As, |A| = abc, so,
\[{{A}^{-1}}=\dfrac{1}{abc}\left[ \begin{matrix}
bc & 0 & 0 \\
0 & ac & 0 \\
0 & 0 & ab \\
\end{matrix} \right]\]
Multiplying each term by \[\dfrac{1}{abc}\] we get,
\[{{A}^{-1}}=\left[ \begin{matrix}
\dfrac{bc}{abc} & 0 & 0 \\
0 & \dfrac{ac}{abc} & 0 \\
0 & 0 & \dfrac{ab}{abc} \\
\end{matrix} \right]\]
\[\Rightarrow {{A}^{-1}}=\left[ \begin{matrix}
\dfrac{1}{a} & 0 & 0 \\
0 & \dfrac{1}{b} & 0 \\
0 & 0 & \dfrac{1}{c} \\
\end{matrix} \right]\]
Hence, we get the inverse of A as \[\left[ \begin{matrix}
\dfrac{1}{a} & 0 & 0 \\
0 & \dfrac{1}{b} & 0 \\
0 & 0 & \dfrac{1}{c} \\
\end{matrix} \right].\]
Note: Remember the determinant of any diagonal matrix is given by the product of its diagonal element as our matrix, \[A=\left[ \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right]\] in the diagonal matrix. So, we can easily find the value \[\left| A \right|=a\times b\times c=abc.\] We get from here that for a diagonal matrix, the inverse of the diagonal matrix is made by inversing the diagonal elements only.
Complete step-by-step solution:
We are given a matrix A as \[\left[ \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right].\] We are asked to find the inverse of this matrix A. We are clearly seen that our matrix A is a diagonal matrix. We know that the inverse of any matrix is given as
\[{{A}^{-1}}=\dfrac{Adj\left( A \right)}{\left| A \right|}\]
So, we will first find the determinant of A.
\[\left| A \right|=\left[ \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right]\]
Expanding along row 1, we get,
\[\Rightarrow a\left( bc-0 \right)+0+0\]
\[\Rightarrow abc\]
We are given that
\[\Rightarrow abc\ne 0\left[ \text{As given} \right]\]
Now, |A| = abc which is not zero. So, the inverse exists.
Now, we have to find the adjoint of A. In order to find the adjoint of A, we will find all the cofactors. So,
\[{{C}_{11}}={{\left( -1 \right)}^{1+1}}\left[ bc-0 \right]\]
\[\Rightarrow {{C}_{11}}={{\left( -1 \right)}^{2}}bc\]
\[\Rightarrow {{C}_{11}}=bc\]
Similarly,
\[{{C}_{12}}={{\left( -1 \right)}^{1+2}}\left[ 0-0 \right]\]
\[\Rightarrow {{C}_{12}}=0\]
\[{{C}_{13}}={{\left( -1 \right)}^{1+3}}\left[ 0-0 \right]\]
\[\Rightarrow {{C}_{13}}=0\]
\[{{C}_{21}}={{\left( -1 \right)}^{2+1}}\left[ 0-0 \right]\]
\[\Rightarrow {{C}_{21}}={{\left( -1 \right)}^{3}}\left( 0 \right)\]
\[\Rightarrow {{C}_{21}}=0\]
Similarly, we find,
\[{{C}_{22}}={{\left( -1 \right)}^{2+2}}\left( ac-0 \right)\]
\[\Rightarrow {{C}_{22}}={{\left( -1 \right)}^{4}}ac\]
\[\Rightarrow {{C}_{22}}=ac\]
Now,
\[{{C}_{23}}={{\left( -1 \right)}^{2+3}}\left( 0+0 \right)\]
\[\Rightarrow {{C}_{23}}=0\]
Now, we will find the cofactor along the row three. So, we get,
\[{{C}_{31}}={{\left( -1 \right)}^{3+1}}\left( 0-0 \right)\]
\[\Rightarrow {{C}_{31}}=0\]
\[{{C}_{32}}={{\left( -1 \right)}^{3+2}}\left[ 0-0 \right]\]
\[\Rightarrow {{C}_{32}}=0\]
And lastly,
\[{{C}_{33}}={{\left( -1 \right)}^{3+3}}\left[ ab-0 \right]\]
\[\Rightarrow {{C}_{33}}={{\left( -1 \right)}^{6}}\left( ab \right)\]
\[\Rightarrow {{C}_{33}}=ab\]
So, using this cofactor, we get our adjoint as,
\[\left( Adj\text{ }A \right)=\left[ \begin{matrix}
bc & 0 & 0 \\
0 & ac & 0 \\
0 & 0 & ab \\
\end{matrix} \right]\]
So putting this adj A in the formula of \[{{A}^{-1}}.\] So, we get,
\[{{A}^{-1}}=\dfrac{Adj\left( A \right)}{\left| A \right|}\]
As, |A| = abc, so,
\[{{A}^{-1}}=\dfrac{1}{abc}\left[ \begin{matrix}
bc & 0 & 0 \\
0 & ac & 0 \\
0 & 0 & ab \\
\end{matrix} \right]\]
Multiplying each term by \[\dfrac{1}{abc}\] we get,
\[{{A}^{-1}}=\left[ \begin{matrix}
\dfrac{bc}{abc} & 0 & 0 \\
0 & \dfrac{ac}{abc} & 0 \\
0 & 0 & \dfrac{ab}{abc} \\
\end{matrix} \right]\]
\[\Rightarrow {{A}^{-1}}=\left[ \begin{matrix}
\dfrac{1}{a} & 0 & 0 \\
0 & \dfrac{1}{b} & 0 \\
0 & 0 & \dfrac{1}{c} \\
\end{matrix} \right]\]
Hence, we get the inverse of A as \[\left[ \begin{matrix}
\dfrac{1}{a} & 0 & 0 \\
0 & \dfrac{1}{b} & 0 \\
0 & 0 & \dfrac{1}{c} \\
\end{matrix} \right].\]
Note: Remember the determinant of any diagonal matrix is given by the product of its diagonal element as our matrix, \[A=\left[ \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right]\] in the diagonal matrix. So, we can easily find the value \[\left| A \right|=a\times b\times c=abc.\] We get from here that for a diagonal matrix, the inverse of the diagonal matrix is made by inversing the diagonal elements only.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

