
If we have a diagonal matrix \[A=diag\left( a,b,c \right)=\left[ \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right]\] such that \[abc\ne 0\] then \[{{A}^{-1}}=diag\left( \dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c} \right)=\left[ \begin{matrix}
\dfrac{1}{a} & 0 & 0 \\
0 & \dfrac{1}{b} & 0 \\
0 & 0 & \dfrac{1}{c} \\
\end{matrix} \right].\]
Answer
571.2k+ views
Hint: We are given a matrix A and we are asked to find the inverse of A. We know that \[{{A}^{-1}}\] is given as \[{{A}^{-1}}=\dfrac{Adj\left( A \right)}{\left| A \right|}.\] So, we will first find the determinant of A. We will expand along row 1 and we will find the determinant of A. Then to find the Adj (A) we will find the cofactor for each position once we have the cofactor, we get Adj (A), then put the value in \[{{A}^{-1}}=\dfrac{Adj\left( A \right)}{\left| A \right|}\] to get the inverse of A.
Complete step-by-step solution:
We are given a matrix A as \[\left[ \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right].\] We are asked to find the inverse of this matrix A. We are clearly seen that our matrix A is a diagonal matrix. We know that the inverse of any matrix is given as
\[{{A}^{-1}}=\dfrac{Adj\left( A \right)}{\left| A \right|}\]
So, we will first find the determinant of A.
\[\left| A \right|=\left[ \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right]\]
Expanding along row 1, we get,
\[\Rightarrow a\left( bc-0 \right)+0+0\]
\[\Rightarrow abc\]
We are given that
\[\Rightarrow abc\ne 0\left[ \text{As given} \right]\]
Now, |A| = abc which is not zero. So, the inverse exists.
Now, we have to find the adjoint of A. In order to find the adjoint of A, we will find all the cofactors. So,
\[{{C}_{11}}={{\left( -1 \right)}^{1+1}}\left[ bc-0 \right]\]
\[\Rightarrow {{C}_{11}}={{\left( -1 \right)}^{2}}bc\]
\[\Rightarrow {{C}_{11}}=bc\]
Similarly,
\[{{C}_{12}}={{\left( -1 \right)}^{1+2}}\left[ 0-0 \right]\]
\[\Rightarrow {{C}_{12}}=0\]
\[{{C}_{13}}={{\left( -1 \right)}^{1+3}}\left[ 0-0 \right]\]
\[\Rightarrow {{C}_{13}}=0\]
\[{{C}_{21}}={{\left( -1 \right)}^{2+1}}\left[ 0-0 \right]\]
\[\Rightarrow {{C}_{21}}={{\left( -1 \right)}^{3}}\left( 0 \right)\]
\[\Rightarrow {{C}_{21}}=0\]
Similarly, we find,
\[{{C}_{22}}={{\left( -1 \right)}^{2+2}}\left( ac-0 \right)\]
\[\Rightarrow {{C}_{22}}={{\left( -1 \right)}^{4}}ac\]
\[\Rightarrow {{C}_{22}}=ac\]
Now,
\[{{C}_{23}}={{\left( -1 \right)}^{2+3}}\left( 0+0 \right)\]
\[\Rightarrow {{C}_{23}}=0\]
Now, we will find the cofactor along the row three. So, we get,
\[{{C}_{31}}={{\left( -1 \right)}^{3+1}}\left( 0-0 \right)\]
\[\Rightarrow {{C}_{31}}=0\]
\[{{C}_{32}}={{\left( -1 \right)}^{3+2}}\left[ 0-0 \right]\]
\[\Rightarrow {{C}_{32}}=0\]
And lastly,
\[{{C}_{33}}={{\left( -1 \right)}^{3+3}}\left[ ab-0 \right]\]
\[\Rightarrow {{C}_{33}}={{\left( -1 \right)}^{6}}\left( ab \right)\]
\[\Rightarrow {{C}_{33}}=ab\]
So, using this cofactor, we get our adjoint as,
\[\left( Adj\text{ }A \right)=\left[ \begin{matrix}
bc & 0 & 0 \\
0 & ac & 0 \\
0 & 0 & ab \\
\end{matrix} \right]\]
So putting this adj A in the formula of \[{{A}^{-1}}.\] So, we get,
\[{{A}^{-1}}=\dfrac{Adj\left( A \right)}{\left| A \right|}\]
As, |A| = abc, so,
\[{{A}^{-1}}=\dfrac{1}{abc}\left[ \begin{matrix}
bc & 0 & 0 \\
0 & ac & 0 \\
0 & 0 & ab \\
\end{matrix} \right]\]
Multiplying each term by \[\dfrac{1}{abc}\] we get,
\[{{A}^{-1}}=\left[ \begin{matrix}
\dfrac{bc}{abc} & 0 & 0 \\
0 & \dfrac{ac}{abc} & 0 \\
0 & 0 & \dfrac{ab}{abc} \\
\end{matrix} \right]\]
\[\Rightarrow {{A}^{-1}}=\left[ \begin{matrix}
\dfrac{1}{a} & 0 & 0 \\
0 & \dfrac{1}{b} & 0 \\
0 & 0 & \dfrac{1}{c} \\
\end{matrix} \right]\]
Hence, we get the inverse of A as \[\left[ \begin{matrix}
\dfrac{1}{a} & 0 & 0 \\
0 & \dfrac{1}{b} & 0 \\
0 & 0 & \dfrac{1}{c} \\
\end{matrix} \right].\]
Note: Remember the determinant of any diagonal matrix is given by the product of its diagonal element as our matrix, \[A=\left[ \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right]\] in the diagonal matrix. So, we can easily find the value \[\left| A \right|=a\times b\times c=abc.\] We get from here that for a diagonal matrix, the inverse of the diagonal matrix is made by inversing the diagonal elements only.
Complete step-by-step solution:
We are given a matrix A as \[\left[ \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right].\] We are asked to find the inverse of this matrix A. We are clearly seen that our matrix A is a diagonal matrix. We know that the inverse of any matrix is given as
\[{{A}^{-1}}=\dfrac{Adj\left( A \right)}{\left| A \right|}\]
So, we will first find the determinant of A.
\[\left| A \right|=\left[ \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right]\]
Expanding along row 1, we get,
\[\Rightarrow a\left( bc-0 \right)+0+0\]
\[\Rightarrow abc\]
We are given that
\[\Rightarrow abc\ne 0\left[ \text{As given} \right]\]
Now, |A| = abc which is not zero. So, the inverse exists.
Now, we have to find the adjoint of A. In order to find the adjoint of A, we will find all the cofactors. So,
\[{{C}_{11}}={{\left( -1 \right)}^{1+1}}\left[ bc-0 \right]\]
\[\Rightarrow {{C}_{11}}={{\left( -1 \right)}^{2}}bc\]
\[\Rightarrow {{C}_{11}}=bc\]
Similarly,
\[{{C}_{12}}={{\left( -1 \right)}^{1+2}}\left[ 0-0 \right]\]
\[\Rightarrow {{C}_{12}}=0\]
\[{{C}_{13}}={{\left( -1 \right)}^{1+3}}\left[ 0-0 \right]\]
\[\Rightarrow {{C}_{13}}=0\]
\[{{C}_{21}}={{\left( -1 \right)}^{2+1}}\left[ 0-0 \right]\]
\[\Rightarrow {{C}_{21}}={{\left( -1 \right)}^{3}}\left( 0 \right)\]
\[\Rightarrow {{C}_{21}}=0\]
Similarly, we find,
\[{{C}_{22}}={{\left( -1 \right)}^{2+2}}\left( ac-0 \right)\]
\[\Rightarrow {{C}_{22}}={{\left( -1 \right)}^{4}}ac\]
\[\Rightarrow {{C}_{22}}=ac\]
Now,
\[{{C}_{23}}={{\left( -1 \right)}^{2+3}}\left( 0+0 \right)\]
\[\Rightarrow {{C}_{23}}=0\]
Now, we will find the cofactor along the row three. So, we get,
\[{{C}_{31}}={{\left( -1 \right)}^{3+1}}\left( 0-0 \right)\]
\[\Rightarrow {{C}_{31}}=0\]
\[{{C}_{32}}={{\left( -1 \right)}^{3+2}}\left[ 0-0 \right]\]
\[\Rightarrow {{C}_{32}}=0\]
And lastly,
\[{{C}_{33}}={{\left( -1 \right)}^{3+3}}\left[ ab-0 \right]\]
\[\Rightarrow {{C}_{33}}={{\left( -1 \right)}^{6}}\left( ab \right)\]
\[\Rightarrow {{C}_{33}}=ab\]
So, using this cofactor, we get our adjoint as,
\[\left( Adj\text{ }A \right)=\left[ \begin{matrix}
bc & 0 & 0 \\
0 & ac & 0 \\
0 & 0 & ab \\
\end{matrix} \right]\]
So putting this adj A in the formula of \[{{A}^{-1}}.\] So, we get,
\[{{A}^{-1}}=\dfrac{Adj\left( A \right)}{\left| A \right|}\]
As, |A| = abc, so,
\[{{A}^{-1}}=\dfrac{1}{abc}\left[ \begin{matrix}
bc & 0 & 0 \\
0 & ac & 0 \\
0 & 0 & ab \\
\end{matrix} \right]\]
Multiplying each term by \[\dfrac{1}{abc}\] we get,
\[{{A}^{-1}}=\left[ \begin{matrix}
\dfrac{bc}{abc} & 0 & 0 \\
0 & \dfrac{ac}{abc} & 0 \\
0 & 0 & \dfrac{ab}{abc} \\
\end{matrix} \right]\]
\[\Rightarrow {{A}^{-1}}=\left[ \begin{matrix}
\dfrac{1}{a} & 0 & 0 \\
0 & \dfrac{1}{b} & 0 \\
0 & 0 & \dfrac{1}{c} \\
\end{matrix} \right]\]
Hence, we get the inverse of A as \[\left[ \begin{matrix}
\dfrac{1}{a} & 0 & 0 \\
0 & \dfrac{1}{b} & 0 \\
0 & 0 & \dfrac{1}{c} \\
\end{matrix} \right].\]
Note: Remember the determinant of any diagonal matrix is given by the product of its diagonal element as our matrix, \[A=\left[ \begin{matrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{matrix} \right]\] in the diagonal matrix. So, we can easily find the value \[\left| A \right|=a\times b\times c=abc.\] We get from here that for a diagonal matrix, the inverse of the diagonal matrix is made by inversing the diagonal elements only.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

