
If we have a determinant $f\left( x \right)=\left|\begin{matrix}
x \\
2\lambda \\
\end{matrix} \right.\text{ }\left. \begin{matrix}
& \lambda \\
& x \\
\end{matrix} \right|$, then $f\left( \lambda x \right)-f\left( x \right)$ is equal to:
(a) $x\left( {{\lambda }^{2}}-1 \right)$
(b) $2\lambda \left( {{x}^{2}}-1 \right)$
(c) ${{\lambda }^{2}}\left( {{x}^{2}}-1 \right)$
(d) $\lambda \left( {{x}^{2}}-1 \right)$
(e) ${{x}^{2}}\left( {{\lambda }^{2}}-1 \right)$
Answer
594.6k+ views
Hint: Here, we can apply the property of determinant that $\det \left( \lambda A \right)=\lambda \times \text{det}\left( A \right)$, where A is any given matrix.
Complete step-by-step answer:
Determinant is a scalar value that can be computed from the elements of a square matrix and encodes certain properties of the linear transformations described by the matrix. The determinant of the matrix A is denoted by det (A), det A or |A|.
The determinant tells us the things about the matrix that are useful in systems of linear equations, helps us to find the inverse of a matrix and it is useful in calculus and more.
In case of $2\times 2$ matrix, the determinant may be defined as:
$|A|=\left| \begin{matrix}
a \\
c \\
\end{matrix} \right.\left. \begin{matrix}
& b \\
& d \\
\end{matrix} \right|=ad-bc$
Determinants possess many algebraic properties.
Determinant is defined only for square matrices.
Here, we are given a square matrix f(x) as:
$f\left( x \right)=\left| \begin{matrix}
x \\
2\lambda \\
\end{matrix} \right.\text{ }\left. \begin{matrix}
& \lambda \\
& x \\
\end{matrix} \right|$
This is a square matrix of order 2 $\times $ 2.
Now, according to the question, to get the value of a given expression that is $f\left( \lambda x \right)-f\left( x \right)$, we need to find the values of both the terms in this expression. So, we have;
\[f\left( \lambda x \right)=\left| \begin{matrix}
\lambda x \\
2\lambda \\
\end{matrix} \right.\text{ }\left. \begin{matrix}
& \lambda \\
& \lambda x \\
\end{matrix} \right|\]
Since, $|\lambda A|=|{{\lambda }^{n}}|A|$, where n is the order of determinant.
Therefore,
\[f\left( \lambda x \right)={{\lambda }^{2}}\left| \begin{matrix}
x \\
2 \\
\end{matrix} \right.\text{ }\left. \begin{matrix}
& 1 \\
& x \\
\end{matrix} \right|={{\lambda }^{2}}\left( {{x}^{2}}-2 \right)\]
And, the value of the other term is $f\left( x \right)={{x}^{2}}-2{{\lambda }^{2}}$.
So, the value of the given expression will be as:
$ f\left( \lambda x \right)-f\left( x \right)={{\lambda }^{2}}\left( {{x}^{2}}-2 \right)-\left( {{x}^{2}}-2{{\lambda }^{2}} \right) \\
\Rightarrow f\left( \lambda x \right)-f\left( x \right)={{\lambda }^{2}}{{x}^{2}}-2{{\lambda }^{2}}-{{x}^{2}}+2{{\lambda }^{2}} \\
\Rightarrow f\left( \lambda x \right)-f\left( x \right)={{x}^{2}}\left( {{\lambda }^{2}}-1 \right) \\ $
Hence, option (e) is the correct answer.
Note: Students should note the property of the determinants that we used here $\det \left( \lambda A \right)=\lambda \times \text{det}\left( A \right)$. The calculations must be done properly to avoid the unnecessary mistakes.
Complete step-by-step answer:
Determinant is a scalar value that can be computed from the elements of a square matrix and encodes certain properties of the linear transformations described by the matrix. The determinant of the matrix A is denoted by det (A), det A or |A|.
The determinant tells us the things about the matrix that are useful in systems of linear equations, helps us to find the inverse of a matrix and it is useful in calculus and more.
In case of $2\times 2$ matrix, the determinant may be defined as:
$|A|=\left| \begin{matrix}
a \\
c \\
\end{matrix} \right.\left. \begin{matrix}
& b \\
& d \\
\end{matrix} \right|=ad-bc$
Determinants possess many algebraic properties.
Determinant is defined only for square matrices.
Here, we are given a square matrix f(x) as:
$f\left( x \right)=\left| \begin{matrix}
x \\
2\lambda \\
\end{matrix} \right.\text{ }\left. \begin{matrix}
& \lambda \\
& x \\
\end{matrix} \right|$
This is a square matrix of order 2 $\times $ 2.
Now, according to the question, to get the value of a given expression that is $f\left( \lambda x \right)-f\left( x \right)$, we need to find the values of both the terms in this expression. So, we have;
\[f\left( \lambda x \right)=\left| \begin{matrix}
\lambda x \\
2\lambda \\
\end{matrix} \right.\text{ }\left. \begin{matrix}
& \lambda \\
& \lambda x \\
\end{matrix} \right|\]
Since, $|\lambda A|=|{{\lambda }^{n}}|A|$, where n is the order of determinant.
Therefore,
\[f\left( \lambda x \right)={{\lambda }^{2}}\left| \begin{matrix}
x \\
2 \\
\end{matrix} \right.\text{ }\left. \begin{matrix}
& 1 \\
& x \\
\end{matrix} \right|={{\lambda }^{2}}\left( {{x}^{2}}-2 \right)\]
And, the value of the other term is $f\left( x \right)={{x}^{2}}-2{{\lambda }^{2}}$.
So, the value of the given expression will be as:
$ f\left( \lambda x \right)-f\left( x \right)={{\lambda }^{2}}\left( {{x}^{2}}-2 \right)-\left( {{x}^{2}}-2{{\lambda }^{2}} \right) \\
\Rightarrow f\left( \lambda x \right)-f\left( x \right)={{\lambda }^{2}}{{x}^{2}}-2{{\lambda }^{2}}-{{x}^{2}}+2{{\lambda }^{2}} \\
\Rightarrow f\left( \lambda x \right)-f\left( x \right)={{x}^{2}}\left( {{\lambda }^{2}}-1 \right) \\ $
Hence, option (e) is the correct answer.
Note: Students should note the property of the determinants that we used here $\det \left( \lambda A \right)=\lambda \times \text{det}\left( A \right)$. The calculations must be done properly to avoid the unnecessary mistakes.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

