
If we are given an integral expression as $\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}=xf\left( x \right){{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}+C$ where, $C$ is a constant of integration, then the function $f\left( x \right)$ is equal to \[\]
A.$\dfrac{-1}{6{{x}^{3}}}$\[\]
B.$\dfrac{3}{{{x}^{2}}}$\[\]
C.$\dfrac{-1}{2{{x}^{2}}}$\[\]
D.$\dfrac{-1}{2{{x}^{3}}}$\[\]
Answer
573.6k+ views
Hint: We proceed from the left hand side and take ${{x}^{6}}$common from the bracket. We substitute ${{t}^{3}}=\dfrac{1}{{{x}^{6}}}+1$ and find $dx$ in terms of $t,dt$ also substitute in the integrand. We integrate with respect to $t$ and put back $t$ in terms of $x$. We multiply and divide $x$ and then compare the resultant expression with expression at the right hand side to get $f\left( x \right)$.\[\]
Complete step-by-step solution
We are given in the question an equation whose left hand side has an integral and the right hand side has functional equation as
\[\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}=xf\left( x \right){{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}+C\]
If we shall integrate the left hand side and try to express the result similar to the expression at the right hand side we may get the required function$f\left( x \right)$. We proceed from left hand side,
\[\Rightarrow \int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}\]
We take ${{x}^{6}}$ common from the bracket in the denominator to get,
\[\begin{align}
& \Rightarrow \int{\dfrac{dx}{{{x}^{3}}{{\left( {{x}^{6}}\left( \dfrac{1}{{{x}^{6}}}+1 \right) \right)}^{\dfrac{2}{3}}}}} \\
& \Rightarrow \int{\dfrac{dx}{{{x}^{3}}{{\left( {{x}^{6}} \right)}^{\dfrac{2}{3}}}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{2}{3}}}}} \\
\end{align}\]
We use the exponential identity of power raised to another power ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}},a\ne 0$ for $a=x,m=6,n=\dfrac{2}{3}$ in the above step to have
\[\begin{align}
& \Rightarrow \int{\dfrac{dx}{{{x}^{3}}{{x}^{6\times \dfrac{2}{3}}}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{2}{3}}}}} \\
& \Rightarrow \int{\dfrac{dx}{{{x}^{3}}{{x}^{4}}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{2}{3}}}}} \\
\end{align}\]
We use the exponential identity of power product with same base ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ for $a=x,m=3,n=4$ in the above step to have,
\[\begin{align}
& \Rightarrow \int{\dfrac{dx}{{{x}^{3+4}}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{2}{3}}}}} \\
& \Rightarrow \int{\dfrac{dx}{{{x}^{7}}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{2}{3}}}}}.........\left( 1 \right) \\
\end{align}\]
We can substitute ${{t}^{3}}=\dfrac{1}{{{x}^{6}}}+1$ in the above step since integration is independent of change in variable and for that we also need $dx$ and rest of the expression in $x$ in terms of $t$. We differentiate ${{t}^{3}}=\dfrac{1}{{{x}^{6}}}+1$ both side with respect to $x$ to have,
\[\begin{align}
& \dfrac{d}{dx}{{t}^{3}}=\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{6}}}+1 \right)=\dfrac{d}{dx}\left( {{x}^{-6}}+1 \right) \\
& \Rightarrow 3{{t}^{2}}\dfrac{dt}{dx}=-6{{x}^{-7}}+0 \\
& \Rightarrow dx=\dfrac{3{{t}^{2}}}{-6{{x}^{-7}}} dt \\
\end{align}\]
We put ${{t}^{3}}=\dfrac{1}{{{x}^{6}}}+1$ and $dx=\dfrac{3{{t}^{2}}}{-6{{x}^{-7}}}$ in (1) to have
\[\begin{align}
& \Rightarrow \int{\dfrac{\dfrac{3{{t}^{2}}}{-6{{x}^{-7}}}dt}{{{x}^{7}}{{\left( {{t}^{3}} \right)}^{\dfrac{2}{3}}}}} \\
& \Rightarrow \int{\dfrac{3{{t}^{2}}dt}{-6{{x}^{-7}}\cdot {{x}^{7}}{{\left( {{t}^{3}} \right)}^{\dfrac{2}{3}}}}} \\
\end{align}\]
We use the exponential identity of power product with same base ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ for $a=x,m=-7,n=7$ and exponential identity of power raised to another power ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}},a\ne 0$ for $a=t,m=3,n=\dfrac{2}{3}$ in the above step to have
\[\begin{align}
& \Rightarrow \int{\dfrac{{{t}^{2}}dt}{-2{{x}^{-7+7}}{{t}^{3\times \dfrac{2}{3}}}}} \\
& \Rightarrow \dfrac{-1}{2}\int{\dfrac{{{t}^{2}}dt}{{{x}^{0}}{{t}^{2}}}} \\
& \Rightarrow \dfrac{-1}{2}\int{dt} \\
& \Rightarrow \dfrac{-1}{2}t+C \\
\end{align}\]
We take cube root of both side of the equation ${{t}^{3}}=\dfrac{1}{{{x}^{6}}}+1$ and find $t={{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{1}{3}}}$. We put $t$ in the above step to have,
\[\begin{align}
& \Rightarrow \dfrac{-1}{2}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{1}{3}}}+C \\
& \Rightarrow \dfrac{-1}{2}{{\left( \dfrac{{{x}^{6}}+1}{{{x}^{6}}} \right)}^{\dfrac{1}{3}}}+C \\
& \Rightarrow \dfrac{-1}{2}\dfrac{{{\left( {{x}^{6}}+1 \right)}^{\dfrac{1}{3}}}}{{{\left( {{x}^{6}} \right)}^{\dfrac{1}{3}}}}+C \\
\end{align}\]
We use exponential identity of power raised to another power ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}},a\ne 0$ for $a=x,m=6,n=\dfrac{1}{3}$ in the above step to have
\[\Rightarrow \dfrac{-1}{2}\dfrac{{{\left( {{x}^{6}}+1 \right)}^{\dfrac{1}{3}}}}{{{x}^{2}}}+C\]
Let us multiply and divide $x$ with the expression to make it comparable with the expression at right hand side $xf\left( x \right){{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}$. We have,
\[\begin{align}
& \Rightarrow \dfrac{-1}{2}x\dfrac{{{\left( {{x}^{6}}+1 \right)}^{\dfrac{1}{3}}}}{{{x}^{2}}\cdot x}+C \\
& \Rightarrow \dfrac{-1}{2{{x}^{3}}}x{{\left( {{x}^{6}}+1 \right)}^{\dfrac{1}{3}}}+C \\
& \Rightarrow x\left( \dfrac{-1}{2{{x}^{3}}} \right){{\left( {{x}^{6}}+1 \right)}^{\dfrac{1}{3}}}+C=xf\left( x \right){{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}} \\
\end{align}\]
We compare both sides and have the required function as $f\left( x \right)=\dfrac{-1}{2{{x}^{3}}}$. So the correct option is D.
Note: We note that the function is not defined for $x=0$ and the question assumes that. The method of integration we used here is called t-substitution or integration by substitution. We have also used the formula standard integral $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1},n\ne -1$ and the standard differentiation formula $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ frequently in this problem.
Complete step-by-step solution
We are given in the question an equation whose left hand side has an integral and the right hand side has functional equation as
\[\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}=xf\left( x \right){{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}+C\]
If we shall integrate the left hand side and try to express the result similar to the expression at the right hand side we may get the required function$f\left( x \right)$. We proceed from left hand side,
\[\Rightarrow \int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}\]
We take ${{x}^{6}}$ common from the bracket in the denominator to get,
\[\begin{align}
& \Rightarrow \int{\dfrac{dx}{{{x}^{3}}{{\left( {{x}^{6}}\left( \dfrac{1}{{{x}^{6}}}+1 \right) \right)}^{\dfrac{2}{3}}}}} \\
& \Rightarrow \int{\dfrac{dx}{{{x}^{3}}{{\left( {{x}^{6}} \right)}^{\dfrac{2}{3}}}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{2}{3}}}}} \\
\end{align}\]
We use the exponential identity of power raised to another power ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}},a\ne 0$ for $a=x,m=6,n=\dfrac{2}{3}$ in the above step to have
\[\begin{align}
& \Rightarrow \int{\dfrac{dx}{{{x}^{3}}{{x}^{6\times \dfrac{2}{3}}}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{2}{3}}}}} \\
& \Rightarrow \int{\dfrac{dx}{{{x}^{3}}{{x}^{4}}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{2}{3}}}}} \\
\end{align}\]
We use the exponential identity of power product with same base ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ for $a=x,m=3,n=4$ in the above step to have,
\[\begin{align}
& \Rightarrow \int{\dfrac{dx}{{{x}^{3+4}}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{2}{3}}}}} \\
& \Rightarrow \int{\dfrac{dx}{{{x}^{7}}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{2}{3}}}}}.........\left( 1 \right) \\
\end{align}\]
We can substitute ${{t}^{3}}=\dfrac{1}{{{x}^{6}}}+1$ in the above step since integration is independent of change in variable and for that we also need $dx$ and rest of the expression in $x$ in terms of $t$. We differentiate ${{t}^{3}}=\dfrac{1}{{{x}^{6}}}+1$ both side with respect to $x$ to have,
\[\begin{align}
& \dfrac{d}{dx}{{t}^{3}}=\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{6}}}+1 \right)=\dfrac{d}{dx}\left( {{x}^{-6}}+1 \right) \\
& \Rightarrow 3{{t}^{2}}\dfrac{dt}{dx}=-6{{x}^{-7}}+0 \\
& \Rightarrow dx=\dfrac{3{{t}^{2}}}{-6{{x}^{-7}}} dt \\
\end{align}\]
We put ${{t}^{3}}=\dfrac{1}{{{x}^{6}}}+1$ and $dx=\dfrac{3{{t}^{2}}}{-6{{x}^{-7}}}$ in (1) to have
\[\begin{align}
& \Rightarrow \int{\dfrac{\dfrac{3{{t}^{2}}}{-6{{x}^{-7}}}dt}{{{x}^{7}}{{\left( {{t}^{3}} \right)}^{\dfrac{2}{3}}}}} \\
& \Rightarrow \int{\dfrac{3{{t}^{2}}dt}{-6{{x}^{-7}}\cdot {{x}^{7}}{{\left( {{t}^{3}} \right)}^{\dfrac{2}{3}}}}} \\
\end{align}\]
We use the exponential identity of power product with same base ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ for $a=x,m=-7,n=7$ and exponential identity of power raised to another power ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}},a\ne 0$ for $a=t,m=3,n=\dfrac{2}{3}$ in the above step to have
\[\begin{align}
& \Rightarrow \int{\dfrac{{{t}^{2}}dt}{-2{{x}^{-7+7}}{{t}^{3\times \dfrac{2}{3}}}}} \\
& \Rightarrow \dfrac{-1}{2}\int{\dfrac{{{t}^{2}}dt}{{{x}^{0}}{{t}^{2}}}} \\
& \Rightarrow \dfrac{-1}{2}\int{dt} \\
& \Rightarrow \dfrac{-1}{2}t+C \\
\end{align}\]
We take cube root of both side of the equation ${{t}^{3}}=\dfrac{1}{{{x}^{6}}}+1$ and find $t={{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{1}{3}}}$. We put $t$ in the above step to have,
\[\begin{align}
& \Rightarrow \dfrac{-1}{2}{{\left( \dfrac{1}{{{x}^{6}}}+1 \right)}^{\dfrac{1}{3}}}+C \\
& \Rightarrow \dfrac{-1}{2}{{\left( \dfrac{{{x}^{6}}+1}{{{x}^{6}}} \right)}^{\dfrac{1}{3}}}+C \\
& \Rightarrow \dfrac{-1}{2}\dfrac{{{\left( {{x}^{6}}+1 \right)}^{\dfrac{1}{3}}}}{{{\left( {{x}^{6}} \right)}^{\dfrac{1}{3}}}}+C \\
\end{align}\]
We use exponential identity of power raised to another power ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}},a\ne 0$ for $a=x,m=6,n=\dfrac{1}{3}$ in the above step to have
\[\Rightarrow \dfrac{-1}{2}\dfrac{{{\left( {{x}^{6}}+1 \right)}^{\dfrac{1}{3}}}}{{{x}^{2}}}+C\]
Let us multiply and divide $x$ with the expression to make it comparable with the expression at right hand side $xf\left( x \right){{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}$. We have,
\[\begin{align}
& \Rightarrow \dfrac{-1}{2}x\dfrac{{{\left( {{x}^{6}}+1 \right)}^{\dfrac{1}{3}}}}{{{x}^{2}}\cdot x}+C \\
& \Rightarrow \dfrac{-1}{2{{x}^{3}}}x{{\left( {{x}^{6}}+1 \right)}^{\dfrac{1}{3}}}+C \\
& \Rightarrow x\left( \dfrac{-1}{2{{x}^{3}}} \right){{\left( {{x}^{6}}+1 \right)}^{\dfrac{1}{3}}}+C=xf\left( x \right){{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}} \\
\end{align}\]
We compare both sides and have the required function as $f\left( x \right)=\dfrac{-1}{2{{x}^{3}}}$. So the correct option is D.
Note: We note that the function is not defined for $x=0$ and the question assumes that. The method of integration we used here is called t-substitution or integration by substitution. We have also used the formula standard integral $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1},n\ne -1$ and the standard differentiation formula $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ frequently in this problem.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

