
If we are given a determinant as $\Delta =\left| \begin{matrix}
2{{\cos }^{2}}x & \sin 2x & -\sin x \\
\sin 2x & 2{{\sin }^{2}}x & \cos x \\
\sin x & -\cos x & 0 \\
\end{matrix} \right|$, prove that $\int\limits_{0}^{\dfrac{\pi }{2}}{\left[ \Delta +{{\Delta }^{'}} \right]}dx=\pi $ where ${{\Delta }^{'}}=\dfrac{d\left( \Delta \right)}{dx}$.
Answer
575.7k+ views
Hint: We find the determinant value of the given form. Then we need to find the differentiation of the determinant. We put the values in the integration of the equation to prove the result. We find the value without integrating like the matrix form.
Complete step-by-step solution:
We have been given the determinant $\Delta =\left| \begin{matrix}
2{{\cos }^{2}}x & \sin 2x & -\sin x \\
\sin 2x & 2{{\sin }^{2}}x & \cos x \\
\sin x & -\cos x & 0 \\
\end{matrix} \right|$. We find the determinant value. We take the first column and multiply every element of that column with its cofactor. We find cofactor of a particular element by omitting that row and column of that particular element. We take the rest of the determinant.
$\Delta =2{{\cos }^{2}}x\left( {{\cos }^{2}}x \right)+\sin 2x\left( \sin x\cos x \right)+\sin x\left( \sin 2x\cos x+2{{\sin }^{3}}x \right)$.
From the standard trigonometric identities, we know that
\[\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right)=1\].
We use different trigonometric formulas and various simplifications to find the value of the determinant. First, we take $2\sin x$ common and use the formula $\sin 2x=2\sin x\cos x$.
\[\begin{align}
& \Delta =2{{\cos }^{2}}x\left( {{\cos }^{2}}x \right)+\sin 2x\left( \sin x\cos x \right)+\sin x\left( \sin 2x\cos x+2{{\sin }^{3}}x \right) \\
& \Rightarrow \Delta =2{{\cos }^{2}}x\left( {{\cos }^{2}}x \right)+2\sin x\cos x\left( \sin x\cos x \right)+2{{\sin }^{2}}x\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right) \\
\end{align}\]
Then we take $2{{\cos }^{2}}x$ common out of the first two terms.
\[\begin{align}
& \Delta =2{{\cos }^{2}}x\left( {{\cos }^{2}}x \right)+2\sin x\cos x\left( \sin x\cos x \right)+2{{\sin }^{2}}x\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right) \\
& \Rightarrow \Delta =2{{\cos }^{2}}x\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right)+2{{\sin }^{2}}x \\
\end{align}\]
We use the formula of \[\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right)=1\] and get
\[\begin{align}
& \Delta =2{{\cos }^{2}}x\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right)+2{{\sin }^{2}}x \\
& \Rightarrow \Delta =2{{\cos }^{2}}x+2{{\sin }^{2}}x \\
& \Rightarrow \Delta =2\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right)=2 \\
\end{align}\]
We have been asked to prove $\int\limits_{0}^{\dfrac{\pi }{2}}{\left[ \Delta +{{\Delta }^{'}} \right]}dx=\pi $. The determinant value is constant, which means that differentiation of that determinant will be 0. So, it implies that ${{\Delta }^{'}}=\dfrac{d\left( \Delta \right)}{dx}=\dfrac{d\left( 2 \right)}{dx}=0$.
Now we replace the values of the determinant and its differentiation in the integration
$\int\limits_{0}^{\dfrac{\pi }{2}}{\left[ \Delta +{{\Delta }^{'}} \right]}dx$.
After replacing the values, we evaluate the value of the integration.
\[\begin{align}
& \int\limits_{0}^{\dfrac{\pi }{2}}{\left[ \Delta +{{\Delta }^{'}} \right]}dx \\
& =\int\limits_{0}^{\dfrac{\pi }{2}}{\left[ 2+0 \right]}dx \\
& =\left[ 2x \right]_{0}^{\dfrac{\pi }{2}} \\
& =2\times \dfrac{\pi }{2} \\
& =\pi \\
\end{align}\].
Thus proved.
Note: We don’t need to apply integration in the determinant itself. It gives value. In the case of matrices, we need to use matrix differentiation or integration. In our case, we just convert it to its simplest form to find the solution. The matrix integration will work for column-wise integration of three columns one by one keeping others intact.
Complete step-by-step solution:
We have been given the determinant $\Delta =\left| \begin{matrix}
2{{\cos }^{2}}x & \sin 2x & -\sin x \\
\sin 2x & 2{{\sin }^{2}}x & \cos x \\
\sin x & -\cos x & 0 \\
\end{matrix} \right|$. We find the determinant value. We take the first column and multiply every element of that column with its cofactor. We find cofactor of a particular element by omitting that row and column of that particular element. We take the rest of the determinant.
$\Delta =2{{\cos }^{2}}x\left( {{\cos }^{2}}x \right)+\sin 2x\left( \sin x\cos x \right)+\sin x\left( \sin 2x\cos x+2{{\sin }^{3}}x \right)$.
From the standard trigonometric identities, we know that
\[\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right)=1\].
We use different trigonometric formulas and various simplifications to find the value of the determinant. First, we take $2\sin x$ common and use the formula $\sin 2x=2\sin x\cos x$.
\[\begin{align}
& \Delta =2{{\cos }^{2}}x\left( {{\cos }^{2}}x \right)+\sin 2x\left( \sin x\cos x \right)+\sin x\left( \sin 2x\cos x+2{{\sin }^{3}}x \right) \\
& \Rightarrow \Delta =2{{\cos }^{2}}x\left( {{\cos }^{2}}x \right)+2\sin x\cos x\left( \sin x\cos x \right)+2{{\sin }^{2}}x\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right) \\
\end{align}\]
Then we take $2{{\cos }^{2}}x$ common out of the first two terms.
\[\begin{align}
& \Delta =2{{\cos }^{2}}x\left( {{\cos }^{2}}x \right)+2\sin x\cos x\left( \sin x\cos x \right)+2{{\sin }^{2}}x\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right) \\
& \Rightarrow \Delta =2{{\cos }^{2}}x\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right)+2{{\sin }^{2}}x \\
\end{align}\]
We use the formula of \[\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right)=1\] and get
\[\begin{align}
& \Delta =2{{\cos }^{2}}x\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right)+2{{\sin }^{2}}x \\
& \Rightarrow \Delta =2{{\cos }^{2}}x+2{{\sin }^{2}}x \\
& \Rightarrow \Delta =2\left( {{\cos }^{2}}x+{{\sin }^{2}}x \right)=2 \\
\end{align}\]
We have been asked to prove $\int\limits_{0}^{\dfrac{\pi }{2}}{\left[ \Delta +{{\Delta }^{'}} \right]}dx=\pi $. The determinant value is constant, which means that differentiation of that determinant will be 0. So, it implies that ${{\Delta }^{'}}=\dfrac{d\left( \Delta \right)}{dx}=\dfrac{d\left( 2 \right)}{dx}=0$.
Now we replace the values of the determinant and its differentiation in the integration
$\int\limits_{0}^{\dfrac{\pi }{2}}{\left[ \Delta +{{\Delta }^{'}} \right]}dx$.
After replacing the values, we evaluate the value of the integration.
\[\begin{align}
& \int\limits_{0}^{\dfrac{\pi }{2}}{\left[ \Delta +{{\Delta }^{'}} \right]}dx \\
& =\int\limits_{0}^{\dfrac{\pi }{2}}{\left[ 2+0 \right]}dx \\
& =\left[ 2x \right]_{0}^{\dfrac{\pi }{2}} \\
& =2\times \dfrac{\pi }{2} \\
& =\pi \\
\end{align}\].
Thus proved.
Note: We don’t need to apply integration in the determinant itself. It gives value. In the case of matrices, we need to use matrix differentiation or integration. In our case, we just convert it to its simplest form to find the solution. The matrix integration will work for column-wise integration of three columns one by one keeping others intact.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

