
If \[\vec a,\vec b,\vec c\] and \[\vec d\] are unit vectors such that \[\left( {\vec a \times \vec b} \right) \cdot \left( {\vec c \times \vec d} \right) = 1\] and \[\vec a \cdot \vec c = \dfrac{1}{2}\], then
A. \[\vec a,\vec b,\vec c\] are non-coplanar
B. \[\vec b,\vec c,\vec d\] are non-coplanar
C. \[\vec b,\vec d\] are non-parallel
D. \[\vec a,\vec d\] are parallel and \[\vec b,\vec c\] are parallel
Answer
585.3k+ views
Hint: First of consider the angle between the vectors \[\left( {\vec a \times \vec b} \right)\] and \[\left( {\vec c \times \vec d} \right)\] as a variable and find its value to show that the two vectors are in parallel to each other. Likewise find the angle between the vectors \[\vec a\] and \[\vec c\]. Then draw a figure for the vectors \[\vec a,\vec b,\vec c\] and \[\vec d\] to get the required answer.
Complete step-by-step answer:
Given that \[\vec a,\vec b,\vec c\] and \[\vec d\] are unit vectors. So, we have \[\left| {\vec a} \right| = \left| {\vec b} \right| = \left| {\vec c} \right| = \left| {\vec d} \right| = 1\].
Also given that \[\left( {\vec a \times \vec b} \right) \cdot \left( {\vec c \times \vec d} \right) = 1\]
Let the angle between \[\left( {\vec a \times \vec b} \right)\] and \[\left( {\vec c \times \vec d} \right)\] be \[\theta \].
We know that for the two vectors \[\vec x\] and \[\vec y\], the dot product is given by \[\vec x \cdot \vec y = \left| {\vec x} \right|\left| {\vec y} \right|\cos \theta \] where \[\theta \] is the angle between the two vectors \[\vec x\] and \[\vec y\].
By using this formula, we have
\[
\Rightarrow \left( {\vec a \times \vec b} \right) \cdot \left( {\vec c \times \vec d} \right) = \left| {\vec a \times \vec b} \right|\left| {\vec c \times \vec d} \right|\cos \theta = 1 \\
\Rightarrow \left| {\vec a \times \vec b} \right|\left| {\vec c \times \vec d} \right|\cos \theta = 1 \\
\]
This is only possible when \[\left| {\vec a \times \vec b} \right| = \left| {\vec c \times \vec d} \right| = \cos \theta = 1\]
So, we have \[\cos \theta = 1\]. Thus, \[\theta = {90^0}\].
Since the angle between the vectors \[\left( {\vec a \times \vec b} \right)\] and \[\left( {\vec c \times \vec d} \right)\] is \[{90^0}\] the two vectors \[\left( {\vec a \times \vec b} \right)\] and \[\left( {\vec c \times \vec d} \right)\] are parallel to each other i.e., \[\left( {\vec a \times \vec b} \right)\parallel \left( {\vec c \times \vec d} \right)..................................\left( 1 \right)\]
Also given that \[\vec a \cdot \vec c = \dfrac{1}{2}\]. Let the angle between the two vectors \[\vec a,\vec c\] be \[\alpha \]. So, we have
\[
\Rightarrow \left| {\vec a} \right|\left| {\vec c} \right|\cos \alpha = \dfrac{1}{2} \\
\Rightarrow 1 \times 1 \times \cos \alpha = \dfrac{1}{2}{\text{ }}\left[ {\because \left| {\vec a} \right| = \left| {\vec c} \right| = 1} \right] \\
\Rightarrow \cos \alpha = \dfrac{1}{2} \\
\therefore \alpha = {60^0}{\text{ }}\left[ {\because \cos {{60}^0} = \dfrac{1}{2}} \right]{\text{ }} \\
\]
We can draw the vectors as
Since the two vectors \[\left( {\vec a \times \vec b} \right)\] and \[\left( {\vec c \times \vec d} \right)\] are parallel to each other and the angle between the vectors \[\vec a\] and \[\vec c\]is \[{60^0}\] we can say that \[\vec b\] and \[\vec d\] are not parallel.
Thus, the correct option is C. \[\vec b,\vec d\] are non-parallel
So, the correct answer is “Option C”.
Note: For the two vectors \[\vec x\] and \[\vec y\], the dot product is given by \[\vec x \cdot \vec y = \left| {\vec x} \right|\left| {\vec y} \right|\cos \theta \] where \[\theta \] is the angle between the two vectors \[\vec x\] and \[\vec y\]. And for the two vectors \[\vec x\] and \[\vec y\], the cross product is given by \[\vec x \times \vec y = \left| {\vec x} \right|\left| {\vec y} \right|\sin \theta \] where \[\theta \] is the angle between the two vectors \[\vec x\] and \[\vec y\].
Complete step-by-step answer:
Given that \[\vec a,\vec b,\vec c\] and \[\vec d\] are unit vectors. So, we have \[\left| {\vec a} \right| = \left| {\vec b} \right| = \left| {\vec c} \right| = \left| {\vec d} \right| = 1\].
Also given that \[\left( {\vec a \times \vec b} \right) \cdot \left( {\vec c \times \vec d} \right) = 1\]
Let the angle between \[\left( {\vec a \times \vec b} \right)\] and \[\left( {\vec c \times \vec d} \right)\] be \[\theta \].
We know that for the two vectors \[\vec x\] and \[\vec y\], the dot product is given by \[\vec x \cdot \vec y = \left| {\vec x} \right|\left| {\vec y} \right|\cos \theta \] where \[\theta \] is the angle between the two vectors \[\vec x\] and \[\vec y\].
By using this formula, we have
\[
\Rightarrow \left( {\vec a \times \vec b} \right) \cdot \left( {\vec c \times \vec d} \right) = \left| {\vec a \times \vec b} \right|\left| {\vec c \times \vec d} \right|\cos \theta = 1 \\
\Rightarrow \left| {\vec a \times \vec b} \right|\left| {\vec c \times \vec d} \right|\cos \theta = 1 \\
\]
This is only possible when \[\left| {\vec a \times \vec b} \right| = \left| {\vec c \times \vec d} \right| = \cos \theta = 1\]
So, we have \[\cos \theta = 1\]. Thus, \[\theta = {90^0}\].
Since the angle between the vectors \[\left( {\vec a \times \vec b} \right)\] and \[\left( {\vec c \times \vec d} \right)\] is \[{90^0}\] the two vectors \[\left( {\vec a \times \vec b} \right)\] and \[\left( {\vec c \times \vec d} \right)\] are parallel to each other i.e., \[\left( {\vec a \times \vec b} \right)\parallel \left( {\vec c \times \vec d} \right)..................................\left( 1 \right)\]
Also given that \[\vec a \cdot \vec c = \dfrac{1}{2}\]. Let the angle between the two vectors \[\vec a,\vec c\] be \[\alpha \]. So, we have
\[
\Rightarrow \left| {\vec a} \right|\left| {\vec c} \right|\cos \alpha = \dfrac{1}{2} \\
\Rightarrow 1 \times 1 \times \cos \alpha = \dfrac{1}{2}{\text{ }}\left[ {\because \left| {\vec a} \right| = \left| {\vec c} \right| = 1} \right] \\
\Rightarrow \cos \alpha = \dfrac{1}{2} \\
\therefore \alpha = {60^0}{\text{ }}\left[ {\because \cos {{60}^0} = \dfrac{1}{2}} \right]{\text{ }} \\
\]
We can draw the vectors as
Since the two vectors \[\left( {\vec a \times \vec b} \right)\] and \[\left( {\vec c \times \vec d} \right)\] are parallel to each other and the angle between the vectors \[\vec a\] and \[\vec c\]is \[{60^0}\] we can say that \[\vec b\] and \[\vec d\] are not parallel.
Thus, the correct option is C. \[\vec b,\vec d\] are non-parallel
So, the correct answer is “Option C”.
Note: For the two vectors \[\vec x\] and \[\vec y\], the dot product is given by \[\vec x \cdot \vec y = \left| {\vec x} \right|\left| {\vec y} \right|\cos \theta \] where \[\theta \] is the angle between the two vectors \[\vec x\] and \[\vec y\]. And for the two vectors \[\vec x\] and \[\vec y\], the cross product is given by \[\vec x \times \vec y = \left| {\vec x} \right|\left| {\vec y} \right|\sin \theta \] where \[\theta \] is the angle between the two vectors \[\vec x\] and \[\vec y\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

