
If $\vec a = 3\hat i - \hat j$ and $\vec b = 2\hat i + \hat j - 3\hat k$, then express $\vec b$ in the form of $\vec b = {\vec b_1} + {\vec b_2}$, where ${\vec b_1}\left\| {\vec a} \right.$ and ${\vec b_2}$ perpendicular to $\vec a$.
Answer
507.9k+ views
Hint: First we are to form the vectors from the given conditions. As given, ${\vec b_1}\left\| {\vec a} \right.$, therefore, we can say that ${\vec b_1} = \lambda \vec a$. And also, ${\vec b_2}$ perpendicular to $\vec a$, so, we know that, ${\vec b_2}.\vec a = 0$. These two conditions will give us two equations. On equating the two equations along with the third condition given, $\vec b = {\vec b_1} + {\vec b_2}$, we will get the required solution.
Complete step by step answer:
Here, given, $\vec a = 3\hat i - \hat j$ and $\vec b = 2\hat i + \hat j - 3\hat k$.
We are to express, $\vec b = {\vec b_1} + {\vec b_2} - - - \left( 1 \right)$
Given, ${\vec b_1}\left\| {\vec a} \right.$.
Therefore, ${\vec b_1}$ can be expressed as a scalar multiple of $\vec a$.
So, we can write, ${\vec b_1} = \lambda \vec a$
Now, substituting the values of $\vec a$, we get,
${\vec b_1} = \lambda \left( {3\hat i - \hat j} \right)$
$ \Rightarrow {\vec b_1} = 3\lambda \hat i - \lambda \hat j$ ………….(A)
And, also given, ${\vec b_2}$ perpendicular to $\vec a$.
So, we know, if two vectors are perpendicular to each other, then their scalar product should be $0$.
Therefore, we can write, ${\vec b_2}.\vec a = 0$
Let us assume, ${\vec b_2} = x\hat i + y\hat j + z\hat k$ ……. (B)
Now, substituting the values of ${\vec b_2}$ and $\vec a$, we get,
${\vec b_2}.\vec a = 0$
$ \Rightarrow (x\hat i + y\hat j + z\hat k).(3\hat i - \hat j) = 0$
$ \Rightarrow 3x - y + 0 = 0$
$ \Rightarrow 3x = y - - - \left( 2 \right)$
Now, substituting the corresponding values of $\vec b,{\vec b_1},{\vec b_2}$ from (A),(B) $\left( 1 \right)$, we get,
$\vec b = {\vec b_1} + {\vec b_2}$
$ \Rightarrow \left( {2\hat i + \hat j - 3\hat k} \right) = \left( {3\lambda \hat i - \lambda \hat j} \right) + \left( {x\hat i + y\hat j + z\hat k} \right)$
$ \Rightarrow 2\hat i + \hat j - 3\hat k = 3\lambda \hat i - \lambda \hat j + x\hat i + y\hat j + z\hat k$
Now, taking the coefficients of $\hat i,\hat j,\hat k$ together on right hand side, we get,
$ \Rightarrow 2\hat i + \hat j - 3\hat k = \left( {3\lambda + x} \right)\hat i + \left( {y - \lambda } \right)\hat j + z\hat k$
Comparing the coefficients of $\hat i,\hat j,\hat k$ on both the sides, we get,
$3\lambda + x = 2 - - - \left( 3 \right)$
$y - \lambda = 1 - - - \left( 4 \right)$
$z = - 3 - - - \left( 5 \right)$
Substituting $3x=y$ which we got from $\left( 2 \right)$ in $\left( 4 \right)$, we get,
$3x - \lambda = 1 - - - \left( 6 \right)$
Now, multiplying $\left( 6 \right)$ by $3$ and adding it to $\left( 3 \right)$, we get,
$\left( {3\lambda + x} \right) + \left( {3\left( {3x - \lambda } \right)} \right) = 2 + 3\left( 1 \right)$
$ \Rightarrow 3\lambda + x + 9x - 3\lambda = 2 + 3$
Cancelling, the $\lambda $ terms, we get,
$ \Rightarrow 10x = 5$
$ \Rightarrow x = \dfrac{1}{2}$
Substituting the value of $x$ in $\left( 2 \right)$, we get,
$y = 3.\dfrac{1}{2} = \dfrac{3}{2}$
Also, substituting the value of $x$ in $\left( 6 \right)$, we get,
$3.\dfrac{1}{2} - \lambda = 1$
$ \Rightarrow \dfrac{3}{2} - \lambda = 1$
Subtracting $\dfrac{3}{2}$ on both sides, we get,
$ \Rightarrow - \lambda = 1 - \dfrac{3}{2}$
$ \Rightarrow - \lambda = - \dfrac{1}{2}$
Multiplying, both sides by $ - 1$, we get,
$\lambda = \dfrac{1}{2}$
Therefore, $x = \dfrac{1}{2},y = \dfrac{3}{2},z = - 3,\lambda = \dfrac{1}{2}$.
Substituting these values in ${\vec b_1}$ and ${\vec b_2}$, we get,
${\vec b_1} = 3\lambda \hat i - \lambda \hat j$
$ \Rightarrow {\vec b_1} = 3.\dfrac{1}{2}.\hat i - \dfrac{1}{2}.\hat j$
$ \Rightarrow {\vec b_1} = \dfrac{3}{2}\hat i - \dfrac{1}{2}\hat j$
And, ${\vec b_2} = x\hat i + y\hat j + z\hat k$
$ \Rightarrow {\vec b_2} = \dfrac{1}{2}.\hat i + \dfrac{3}{2}.\hat j + \left( { - 3} \right)\hat k$
$ \Rightarrow {\vec b_2} = \dfrac{1}{2}\hat i + \dfrac{3}{2}\hat j - 3\hat k$
Therefore, $\vec b = \left( {\dfrac{3}{2}\hat i - \dfrac{1}{2}\hat j} \right) + \left( {\dfrac{1}{2}\hat i + \dfrac{3}{2}\hat j - 3\hat k} \right)$.
Note:
When two vectors are parallel to each other, all the points in one vector are at a certain distance from their corresponding points in the other vector. Hence, one vector can be expressed as a scalar multiple of the other vector. And, when two vectors are perpendicular to each other, their scalar product is $0$, because, in the scalar product there is a term of $\cos \theta $, where $\theta $ is the angle between the two vectors. So, $\cos 90^\circ = 0$, hence the whole product turns out to be $0$.
Complete step by step answer:
Here, given, $\vec a = 3\hat i - \hat j$ and $\vec b = 2\hat i + \hat j - 3\hat k$.
We are to express, $\vec b = {\vec b_1} + {\vec b_2} - - - \left( 1 \right)$
Given, ${\vec b_1}\left\| {\vec a} \right.$.
Therefore, ${\vec b_1}$ can be expressed as a scalar multiple of $\vec a$.
So, we can write, ${\vec b_1} = \lambda \vec a$
Now, substituting the values of $\vec a$, we get,
${\vec b_1} = \lambda \left( {3\hat i - \hat j} \right)$
$ \Rightarrow {\vec b_1} = 3\lambda \hat i - \lambda \hat j$ ………….(A)
And, also given, ${\vec b_2}$ perpendicular to $\vec a$.
So, we know, if two vectors are perpendicular to each other, then their scalar product should be $0$.
Therefore, we can write, ${\vec b_2}.\vec a = 0$
Let us assume, ${\vec b_2} = x\hat i + y\hat j + z\hat k$ ……. (B)
Now, substituting the values of ${\vec b_2}$ and $\vec a$, we get,
${\vec b_2}.\vec a = 0$
$ \Rightarrow (x\hat i + y\hat j + z\hat k).(3\hat i - \hat j) = 0$
$ \Rightarrow 3x - y + 0 = 0$
$ \Rightarrow 3x = y - - - \left( 2 \right)$
Now, substituting the corresponding values of $\vec b,{\vec b_1},{\vec b_2}$ from (A),(B) $\left( 1 \right)$, we get,
$\vec b = {\vec b_1} + {\vec b_2}$
$ \Rightarrow \left( {2\hat i + \hat j - 3\hat k} \right) = \left( {3\lambda \hat i - \lambda \hat j} \right) + \left( {x\hat i + y\hat j + z\hat k} \right)$
$ \Rightarrow 2\hat i + \hat j - 3\hat k = 3\lambda \hat i - \lambda \hat j + x\hat i + y\hat j + z\hat k$
Now, taking the coefficients of $\hat i,\hat j,\hat k$ together on right hand side, we get,
$ \Rightarrow 2\hat i + \hat j - 3\hat k = \left( {3\lambda + x} \right)\hat i + \left( {y - \lambda } \right)\hat j + z\hat k$
Comparing the coefficients of $\hat i,\hat j,\hat k$ on both the sides, we get,
$3\lambda + x = 2 - - - \left( 3 \right)$
$y - \lambda = 1 - - - \left( 4 \right)$
$z = - 3 - - - \left( 5 \right)$
Substituting $3x=y$ which we got from $\left( 2 \right)$ in $\left( 4 \right)$, we get,
$3x - \lambda = 1 - - - \left( 6 \right)$
Now, multiplying $\left( 6 \right)$ by $3$ and adding it to $\left( 3 \right)$, we get,
$\left( {3\lambda + x} \right) + \left( {3\left( {3x - \lambda } \right)} \right) = 2 + 3\left( 1 \right)$
$ \Rightarrow 3\lambda + x + 9x - 3\lambda = 2 + 3$
Cancelling, the $\lambda $ terms, we get,
$ \Rightarrow 10x = 5$
$ \Rightarrow x = \dfrac{1}{2}$
Substituting the value of $x$ in $\left( 2 \right)$, we get,
$y = 3.\dfrac{1}{2} = \dfrac{3}{2}$
Also, substituting the value of $x$ in $\left( 6 \right)$, we get,
$3.\dfrac{1}{2} - \lambda = 1$
$ \Rightarrow \dfrac{3}{2} - \lambda = 1$
Subtracting $\dfrac{3}{2}$ on both sides, we get,
$ \Rightarrow - \lambda = 1 - \dfrac{3}{2}$
$ \Rightarrow - \lambda = - \dfrac{1}{2}$
Multiplying, both sides by $ - 1$, we get,
$\lambda = \dfrac{1}{2}$
Therefore, $x = \dfrac{1}{2},y = \dfrac{3}{2},z = - 3,\lambda = \dfrac{1}{2}$.
Substituting these values in ${\vec b_1}$ and ${\vec b_2}$, we get,
${\vec b_1} = 3\lambda \hat i - \lambda \hat j$
$ \Rightarrow {\vec b_1} = 3.\dfrac{1}{2}.\hat i - \dfrac{1}{2}.\hat j$
$ \Rightarrow {\vec b_1} = \dfrac{3}{2}\hat i - \dfrac{1}{2}\hat j$
And, ${\vec b_2} = x\hat i + y\hat j + z\hat k$
$ \Rightarrow {\vec b_2} = \dfrac{1}{2}.\hat i + \dfrac{3}{2}.\hat j + \left( { - 3} \right)\hat k$
$ \Rightarrow {\vec b_2} = \dfrac{1}{2}\hat i + \dfrac{3}{2}\hat j - 3\hat k$
Therefore, $\vec b = \left( {\dfrac{3}{2}\hat i - \dfrac{1}{2}\hat j} \right) + \left( {\dfrac{1}{2}\hat i + \dfrac{3}{2}\hat j - 3\hat k} \right)$.
Note:
When two vectors are parallel to each other, all the points in one vector are at a certain distance from their corresponding points in the other vector. Hence, one vector can be expressed as a scalar multiple of the other vector. And, when two vectors are perpendicular to each other, their scalar product is $0$, because, in the scalar product there is a term of $\cos \theta $, where $\theta $ is the angle between the two vectors. So, $\cos 90^\circ = 0$, hence the whole product turns out to be $0$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

