
If V be the volume of a tetrahedron and \[V'\] be the volume of another tetrahedron formed by the centroids of faces of the previous tetrahedron and\[V = KV'\] , then K is equal to
a. $9$
b. $12$
c. $27$
d. $81$
Answer
560.1k+ views
Hint: To solve this question let the vertices of the tetrahedron are O$(0,0,0)$ , A$(a,0,0)$, B $(0,b,0)$and C $(0,0,c)$. The Volume of tetrahedron is V=\[\dfrac{1}{6}[\overrightarrow a \,\,\vec b\,\,\overrightarrow c ]\] .
Find the centroids of the each faces OAB, OAC, OBC,ABC are say ${H_1}\left( {\dfrac{a}{3},\dfrac{b}{3},0} \right)$ , ${H_2}\left( {\dfrac{a}{3},0,\dfrac{c}{3}} \right)$, ${H_3}$$\left( {0,\dfrac{b}{3},\dfrac{c}{3}} \right)$ and ${H_4}\left( {\dfrac{a}{3},\dfrac{b}{3},\dfrac{c}{3}} \right)$.
Since the distances are $\overrightarrow {{H_4}{H_1}} = \dfrac{{\overrightarrow c }}{3}$, $\overrightarrow {{H_4}{H_2}} = \dfrac{{\overrightarrow b }}{3}$,$\overrightarrow {{H_4}{H_3}} = \dfrac{{\overrightarrow a }}{3}$, Volume of tetrahedron by centroids,
$V' = \dfrac{1}{6}\left[ {\dfrac{{\overrightarrow a }}{3}\,\,\dfrac{{\overrightarrow b }}{3}\,\,\dfrac{{\overrightarrow c }}{3}} \right]$
By substituting V=\[\dfrac{1}{6}[\overrightarrow a \,\,\vec b\,\,\overrightarrow c ]\]into $V'$we can get the required relationship.
Complete step by step answer:
Consider vertices of the tetrahedron are O$(0,0,0)$ , A$(a,0,0)$, B $(0,b,0)$and C $(0,0,c)$.
The Volume of tetrahedron is V=\[\dfrac{1}{6}[\overrightarrow a \,\,\vec b\,\,\overrightarrow c ]\] , where \[\overrightarrow a \,\], \[\vec b\], and \[\overrightarrow c \] are the distances $\overrightarrow {OA} $ , $\overrightarrow {OB} $,and $\overrightarrow {OC} $ respectively.
The centroid is given by coordinates: a triangle with vertices at \[\left( {{x_1},{\text{ }}{y_1},{z_1}} \right)\],\[\left( {{x_2},{\text{ }}{y_2},{z_2}} \right)\],\[\left( {{x_3},{\text{ }}{y_3},{z_3}} \right)\] has centroid at $\left( {\dfrac{{{x_1}{\text{ + }}{y_1} + {z_1}}}{3},\dfrac{{{x_2}{\text{ + }}{y_2} + {z_2}}}{3},\dfrac{{{x_3}{\text{ + }}{y_3} + {z_3}}}{3}} \right)$ .
Now, apply the centroids formula of faces of the tetrahedron O$(0,0,0)$ , A$(a,0,0)$, B $(0,b,0)$.
The centroids of the face OAB is found by substituting \[\left( {{x_1},{\text{ }}{y_1},{z_1}} \right) = (0,0,0)\],\[\left( {{x_2},{\text{ }}{y_2},{z_2}} \right) = (a,0,0)\]and \[\left( {{x_3},{\text{ }}{y_3},{z_3}} \right) = \left( {0,{\text{ }}b,0} \right)\].into the formula.
The centroid is ${H_1}\left( {\dfrac{a}{3},\dfrac{b}{3},0} \right)$.
Similarly we can find centroids of faces OAC, OBC,ABC are , ${H_2}\left( {\dfrac{a}{3},0,\dfrac{c}{3}} \right)$, ${H_3}$$\left( {0,\dfrac{b}{3},\dfrac{c}{3}} \right)$ and ${H_4}\left( {\dfrac{a}{3},\dfrac{b}{3},\dfrac{c}{3}} \right)$respectively.
Since the distances are $\overrightarrow {{H_4}{H_1}} = \dfrac{{\overrightarrow c }}{3}$, $\overrightarrow {{H_4}{H_2}} = \dfrac{{\overrightarrow b }}{3}$,$\overrightarrow {{H_4}{H_3}} = \dfrac{{\overrightarrow a }}{3}$, Volume of tetrahedron by centroids,
$V' = \dfrac{1}{6}\left[ {\dfrac{{\overrightarrow a }}{3}\,\,\dfrac{{\overrightarrow b }}{3}\,\,\dfrac{{\overrightarrow c }}{3}} \right]$
By substituting V= \[\dfrac{1}{6}[\overrightarrow a \,\,\vec b\,\,\overrightarrow c ]\] into $V'$we can get the required relationship.
$V' = \dfrac{1}{6} \times \dfrac{1}{{27}}\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$
\[V' = \dfrac{1}{{27}}V\]
\[27V' = V\]
Here, the value of \[K\] is $27$ .
Note: Use Distance formula to find $\overrightarrow {{H_4}{H_1}} = \dfrac{{\overrightarrow c }}{3}$.
If ${H_1}\left( {\dfrac{a}{3},\dfrac{b}{3},0} \right)$and ${H_4}\left( {\dfrac{a}{3},\dfrac{b}{3},\dfrac{c}{3}} \right)$then distance,
$\overrightarrow {{H_4}{H_1}} = \sqrt {{{\left( {\dfrac{a}{3} - \dfrac{a}{3}} \right)}^2} + {{\left( {\dfrac{b}{3} - \dfrac{b}{3}} \right)}^2} + {{\left( {0 - \dfrac{c}{3}} \right)}^2}} $
$\overrightarrow {{H_4}{H_1}} = \sqrt {0 + 0 + {{\left( {\dfrac{c}{3}} \right)}^2}} $
$\overrightarrow {{H_4}{H_1}} = \dfrac{c}{3}$
Find the centroids of the each faces OAB, OAC, OBC,ABC are say ${H_1}\left( {\dfrac{a}{3},\dfrac{b}{3},0} \right)$ , ${H_2}\left( {\dfrac{a}{3},0,\dfrac{c}{3}} \right)$, ${H_3}$$\left( {0,\dfrac{b}{3},\dfrac{c}{3}} \right)$ and ${H_4}\left( {\dfrac{a}{3},\dfrac{b}{3},\dfrac{c}{3}} \right)$.
Since the distances are $\overrightarrow {{H_4}{H_1}} = \dfrac{{\overrightarrow c }}{3}$, $\overrightarrow {{H_4}{H_2}} = \dfrac{{\overrightarrow b }}{3}$,$\overrightarrow {{H_4}{H_3}} = \dfrac{{\overrightarrow a }}{3}$, Volume of tetrahedron by centroids,
$V' = \dfrac{1}{6}\left[ {\dfrac{{\overrightarrow a }}{3}\,\,\dfrac{{\overrightarrow b }}{3}\,\,\dfrac{{\overrightarrow c }}{3}} \right]$
By substituting V=\[\dfrac{1}{6}[\overrightarrow a \,\,\vec b\,\,\overrightarrow c ]\]into $V'$we can get the required relationship.
Complete step by step answer:
Consider vertices of the tetrahedron are O$(0,0,0)$ , A$(a,0,0)$, B $(0,b,0)$and C $(0,0,c)$.
The Volume of tetrahedron is V=\[\dfrac{1}{6}[\overrightarrow a \,\,\vec b\,\,\overrightarrow c ]\] , where \[\overrightarrow a \,\], \[\vec b\], and \[\overrightarrow c \] are the distances $\overrightarrow {OA} $ , $\overrightarrow {OB} $,and $\overrightarrow {OC} $ respectively.
The centroid is given by coordinates: a triangle with vertices at \[\left( {{x_1},{\text{ }}{y_1},{z_1}} \right)\],\[\left( {{x_2},{\text{ }}{y_2},{z_2}} \right)\],\[\left( {{x_3},{\text{ }}{y_3},{z_3}} \right)\] has centroid at $\left( {\dfrac{{{x_1}{\text{ + }}{y_1} + {z_1}}}{3},\dfrac{{{x_2}{\text{ + }}{y_2} + {z_2}}}{3},\dfrac{{{x_3}{\text{ + }}{y_3} + {z_3}}}{3}} \right)$ .
Now, apply the centroids formula of faces of the tetrahedron O$(0,0,0)$ , A$(a,0,0)$, B $(0,b,0)$.
The centroids of the face OAB is found by substituting \[\left( {{x_1},{\text{ }}{y_1},{z_1}} \right) = (0,0,0)\],\[\left( {{x_2},{\text{ }}{y_2},{z_2}} \right) = (a,0,0)\]and \[\left( {{x_3},{\text{ }}{y_3},{z_3}} \right) = \left( {0,{\text{ }}b,0} \right)\].into the formula.
The centroid is ${H_1}\left( {\dfrac{a}{3},\dfrac{b}{3},0} \right)$.
Similarly we can find centroids of faces OAC, OBC,ABC are , ${H_2}\left( {\dfrac{a}{3},0,\dfrac{c}{3}} \right)$, ${H_3}$$\left( {0,\dfrac{b}{3},\dfrac{c}{3}} \right)$ and ${H_4}\left( {\dfrac{a}{3},\dfrac{b}{3},\dfrac{c}{3}} \right)$respectively.
Since the distances are $\overrightarrow {{H_4}{H_1}} = \dfrac{{\overrightarrow c }}{3}$, $\overrightarrow {{H_4}{H_2}} = \dfrac{{\overrightarrow b }}{3}$,$\overrightarrow {{H_4}{H_3}} = \dfrac{{\overrightarrow a }}{3}$, Volume of tetrahedron by centroids,
$V' = \dfrac{1}{6}\left[ {\dfrac{{\overrightarrow a }}{3}\,\,\dfrac{{\overrightarrow b }}{3}\,\,\dfrac{{\overrightarrow c }}{3}} \right]$
By substituting V= \[\dfrac{1}{6}[\overrightarrow a \,\,\vec b\,\,\overrightarrow c ]\] into $V'$we can get the required relationship.
$V' = \dfrac{1}{6} \times \dfrac{1}{{27}}\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$
\[V' = \dfrac{1}{{27}}V\]
\[27V' = V\]
Here, the value of \[K\] is $27$ .
Note: Use Distance formula to find $\overrightarrow {{H_4}{H_1}} = \dfrac{{\overrightarrow c }}{3}$.
If ${H_1}\left( {\dfrac{a}{3},\dfrac{b}{3},0} \right)$and ${H_4}\left( {\dfrac{a}{3},\dfrac{b}{3},\dfrac{c}{3}} \right)$then distance,
$\overrightarrow {{H_4}{H_1}} = \sqrt {{{\left( {\dfrac{a}{3} - \dfrac{a}{3}} \right)}^2} + {{\left( {\dfrac{b}{3} - \dfrac{b}{3}} \right)}^2} + {{\left( {0 - \dfrac{c}{3}} \right)}^2}} $
$\overrightarrow {{H_4}{H_1}} = \sqrt {0 + 0 + {{\left( {\dfrac{c}{3}} \right)}^2}} $
$\overrightarrow {{H_4}{H_1}} = \dfrac{c}{3}$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

