
If $u=\log \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$ , then prove that $\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}\right)\left(\dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=1$
Answer
591.9k+ views
Hint: In the question, first work out on differentiation of the given function u two times with respective to x, y and z respectively. Second work out on the left hand side of the given expression and their simplification.
Complete step-by-step answer:
It is given that
$u=\log \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
$u=\log {{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{\dfrac{1}{2}}}$
By using the logarithmic rule, we get
$u=\dfrac{1}{2}\log \left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)$
Multiplying both sides by 2, we get
$2u=\log \left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)................(1)$
Differentiating with respect to x on both sides, we get
$2\dfrac{du}{dx}=\dfrac{1}{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}(2x)$
Dividing both sides by 2, we get
$\dfrac{du}{dx}=\dfrac{x}{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}..............(2)$
Differentiating the equation (2) with respect to x by using quotient rule $\left( \dfrac{d}{dx}\dfrac{u}{v} \right)=\dfrac{v\left( \dfrac{du}{dx} \right)-u\left( \dfrac{dv}{dx} \right)}{{{v}^{2}}}$ , we get
$\dfrac{{{d}^{2}}u}{d{{x}^{2}}}=\dfrac{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{dx}{dx} \right)-x\left( \dfrac{d}{dx}({{x}^{2}}+{{y}^{2}}+{{z}^{2}}) \right)}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$
Rearranging the terms, we get
$\dfrac{{{d}^{2}}u}{d{{x}^{2}}}=\dfrac{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)-x\left( 2x \right)}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}=\dfrac{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2{{x}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$
Finally we get
$\dfrac{{{d}^{2}}u}{d{{x}^{2}}}=\dfrac{-{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$
Similarly, differentiate the given function with respect to y and z , we get
$\dfrac{{{d}^{2}}u}{d{{y}^{2}}}=\dfrac{{{x}^{2}}-{{y}^{2}}+{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$ and $\dfrac{{{d}^{2}}u}{d{{z}^{2}}}=\dfrac{{{x}^{2}}+{{y}^{2}}-{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$
Let us consider the left hand side,
$\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left[ \dfrac{-{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+{{x}^{2}}-{{y}^{2}}+{{z}^{2}}+{{x}^{2}}+{{y}^{2}}-{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}} \right]$
Cancelling the like terms on the right side, we get
$\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left[ \dfrac{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}} \right]$
Rearranging the terms, we get
$\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=\left[ \dfrac{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}} \right]$
Cancelling the terms on the right side, we get
$\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=1$
This is a desired result.
Note:We might get confused about the difference between the ordinary differentiation and partial differentiation. In ordinary differentiation, we find derivatives with respect to one variable only, as function contains only one variable. Partial differentiation is used to differentiate mathematical functions having more than one variable in them.
Complete step-by-step answer:
It is given that
$u=\log \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
$u=\log {{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{\dfrac{1}{2}}}$
By using the logarithmic rule, we get
$u=\dfrac{1}{2}\log \left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)$
Multiplying both sides by 2, we get
$2u=\log \left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)................(1)$
Differentiating with respect to x on both sides, we get
$2\dfrac{du}{dx}=\dfrac{1}{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}(2x)$
Dividing both sides by 2, we get
$\dfrac{du}{dx}=\dfrac{x}{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}..............(2)$
Differentiating the equation (2) with respect to x by using quotient rule $\left( \dfrac{d}{dx}\dfrac{u}{v} \right)=\dfrac{v\left( \dfrac{du}{dx} \right)-u\left( \dfrac{dv}{dx} \right)}{{{v}^{2}}}$ , we get
$\dfrac{{{d}^{2}}u}{d{{x}^{2}}}=\dfrac{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{dx}{dx} \right)-x\left( \dfrac{d}{dx}({{x}^{2}}+{{y}^{2}}+{{z}^{2}}) \right)}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$
Rearranging the terms, we get
$\dfrac{{{d}^{2}}u}{d{{x}^{2}}}=\dfrac{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)-x\left( 2x \right)}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}=\dfrac{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2{{x}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$
Finally we get
$\dfrac{{{d}^{2}}u}{d{{x}^{2}}}=\dfrac{-{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$
Similarly, differentiate the given function with respect to y and z , we get
$\dfrac{{{d}^{2}}u}{d{{y}^{2}}}=\dfrac{{{x}^{2}}-{{y}^{2}}+{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$ and $\dfrac{{{d}^{2}}u}{d{{z}^{2}}}=\dfrac{{{x}^{2}}+{{y}^{2}}-{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$
Let us consider the left hand side,
$\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left[ \dfrac{-{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+{{x}^{2}}-{{y}^{2}}+{{z}^{2}}+{{x}^{2}}+{{y}^{2}}-{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}} \right]$
Cancelling the like terms on the right side, we get
$\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left[ \dfrac{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}} \right]$
Rearranging the terms, we get
$\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=\left[ \dfrac{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}} \right]$
Cancelling the terms on the right side, we get
$\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=1$
This is a desired result.
Note:We might get confused about the difference between the ordinary differentiation and partial differentiation. In ordinary differentiation, we find derivatives with respect to one variable only, as function contains only one variable. Partial differentiation is used to differentiate mathematical functions having more than one variable in them.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

