
If $u=\log \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$ , then prove that $\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}}\right)\left(\dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=1$
Answer
585.3k+ views
Hint: In the question, first work out on differentiation of the given function u two times with respective to x, y and z respectively. Second work out on the left hand side of the given expression and their simplification.
Complete step-by-step answer:
It is given that
$u=\log \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
$u=\log {{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{\dfrac{1}{2}}}$
By using the logarithmic rule, we get
$u=\dfrac{1}{2}\log \left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)$
Multiplying both sides by 2, we get
$2u=\log \left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)................(1)$
Differentiating with respect to x on both sides, we get
$2\dfrac{du}{dx}=\dfrac{1}{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}(2x)$
Dividing both sides by 2, we get
$\dfrac{du}{dx}=\dfrac{x}{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}..............(2)$
Differentiating the equation (2) with respect to x by using quotient rule $\left( \dfrac{d}{dx}\dfrac{u}{v} \right)=\dfrac{v\left( \dfrac{du}{dx} \right)-u\left( \dfrac{dv}{dx} \right)}{{{v}^{2}}}$ , we get
$\dfrac{{{d}^{2}}u}{d{{x}^{2}}}=\dfrac{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{dx}{dx} \right)-x\left( \dfrac{d}{dx}({{x}^{2}}+{{y}^{2}}+{{z}^{2}}) \right)}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$
Rearranging the terms, we get
$\dfrac{{{d}^{2}}u}{d{{x}^{2}}}=\dfrac{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)-x\left( 2x \right)}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}=\dfrac{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2{{x}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$
Finally we get
$\dfrac{{{d}^{2}}u}{d{{x}^{2}}}=\dfrac{-{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$
Similarly, differentiate the given function with respect to y and z , we get
$\dfrac{{{d}^{2}}u}{d{{y}^{2}}}=\dfrac{{{x}^{2}}-{{y}^{2}}+{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$ and $\dfrac{{{d}^{2}}u}{d{{z}^{2}}}=\dfrac{{{x}^{2}}+{{y}^{2}}-{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$
Let us consider the left hand side,
$\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left[ \dfrac{-{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+{{x}^{2}}-{{y}^{2}}+{{z}^{2}}+{{x}^{2}}+{{y}^{2}}-{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}} \right]$
Cancelling the like terms on the right side, we get
$\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left[ \dfrac{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}} \right]$
Rearranging the terms, we get
$\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=\left[ \dfrac{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}} \right]$
Cancelling the terms on the right side, we get
$\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=1$
This is a desired result.
Note:We might get confused about the difference between the ordinary differentiation and partial differentiation. In ordinary differentiation, we find derivatives with respect to one variable only, as function contains only one variable. Partial differentiation is used to differentiate mathematical functions having more than one variable in them.
Complete step-by-step answer:
It is given that
$u=\log \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
$u=\log {{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{\dfrac{1}{2}}}$
By using the logarithmic rule, we get
$u=\dfrac{1}{2}\log \left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)$
Multiplying both sides by 2, we get
$2u=\log \left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)................(1)$
Differentiating with respect to x on both sides, we get
$2\dfrac{du}{dx}=\dfrac{1}{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}(2x)$
Dividing both sides by 2, we get
$\dfrac{du}{dx}=\dfrac{x}{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}..............(2)$
Differentiating the equation (2) with respect to x by using quotient rule $\left( \dfrac{d}{dx}\dfrac{u}{v} \right)=\dfrac{v\left( \dfrac{du}{dx} \right)-u\left( \dfrac{dv}{dx} \right)}{{{v}^{2}}}$ , we get
$\dfrac{{{d}^{2}}u}{d{{x}^{2}}}=\dfrac{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{dx}{dx} \right)-x\left( \dfrac{d}{dx}({{x}^{2}}+{{y}^{2}}+{{z}^{2}}) \right)}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$
Rearranging the terms, we get
$\dfrac{{{d}^{2}}u}{d{{x}^{2}}}=\dfrac{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)-x\left( 2x \right)}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}=\dfrac{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2{{x}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$
Finally we get
$\dfrac{{{d}^{2}}u}{d{{x}^{2}}}=\dfrac{-{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$
Similarly, differentiate the given function with respect to y and z , we get
$\dfrac{{{d}^{2}}u}{d{{y}^{2}}}=\dfrac{{{x}^{2}}-{{y}^{2}}+{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$ and $\dfrac{{{d}^{2}}u}{d{{z}^{2}}}=\dfrac{{{x}^{2}}+{{y}^{2}}-{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}$
Let us consider the left hand side,
$\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left[ \dfrac{-{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+{{x}^{2}}-{{y}^{2}}+{{z}^{2}}+{{x}^{2}}+{{y}^{2}}-{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}} \right]$
Cancelling the like terms on the right side, we get
$\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left[ \dfrac{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}} \right]$
Rearranging the terms, we get
$\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=\left[ \dfrac{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{2}}} \right]$
Cancelling the terms on the right side, we get
$\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)\left( \dfrac{{{d}^{2}}u}{d{{x}^{2}}}+\dfrac{{{d}^{2}}u}{d{{y}^{2}}}+\dfrac{{{d}^{2}}u}{d{{z}^{2}}} \right)=1$
This is a desired result.
Note:We might get confused about the difference between the ordinary differentiation and partial differentiation. In ordinary differentiation, we find derivatives with respect to one variable only, as function contains only one variable. Partial differentiation is used to differentiate mathematical functions having more than one variable in them.
Recently Updated Pages
Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

