
If ${\text{u = log(}}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz)}}$ and ${\left( {\dfrac{\partial }{{\partial {\text{x}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{y}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{z}}}}} \right)^2}{\text{u = }}\dfrac{{ - {\text{k}}}}{{{{({\text{x + y + z)}}}^2}}}$, then k =?
A. 6
B. 3
C. 9
D. 5
Answer
524k+ views
Hint: To solve this question, we will use partial differentiation to differentiate the given function. In Partial differentiation if we are differentiating a function which is a product of x and y, so to differentiate with respect to x, we will keep y as a constant and differentiate the function with respect to x. In this question, we will partially differentiate u two times to find the value of k.
Complete step-by-step answer:
Now, we will use partial differentiation. It is denoted by $\partial $. We are given ${\text{u = log(}}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz)}}$. So, partially differentiating u with respect to x, we get
$\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ = }}\dfrac{{3{{\text{x}}^2}{\text{ - 3yz}}}}{{{\text{(}}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz)}}}}$
Similarly, partially differentiating u with respect to y and z, we get
$\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ = }}\dfrac{{3{{\text{y}}^2}{\text{ - 3xz}}}}{{{\text{(}}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz)}}}}$
$\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}{\text{ = }}\dfrac{{3{{\text{z}}^2}{\text{ - 3xy}}}}{{{\text{(}}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz)}}}}$
On adding all the three partial derivatives, we get
$\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}{\text{ = }}\dfrac{{3{{\text{x}}^2}{\text{ + 3}}{{\text{y}}^2}{\text{ + 3}}{{\text{z}}^2}{\text{ - 3xy - 3yz - 3xz}}}}{{{\text{(}}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz)}}}}$
$\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}{\text{ = }}\dfrac{{3({{\text{x}}^2}{\text{ + }}{{\text{y}}^2}{\text{ + }}{{\text{z}}^2}{\text{) - 3(xy + yz + xz)}}}}{{{\text{(}}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz)}}}}$
$\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}{\text{ = }}\dfrac{{3({{\text{x}}^2}{\text{ + }}{{\text{y}}^2}{\text{ + }}{{\text{z}}^2}{\text{ - xy - yz - xz)}}}}{{{\text{(}}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz)}}}}$
Now, we know that ${{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz = (x + y + z)(}}{{\text{x}}^2}{\text{ + }}{{\text{y}}^2}{\text{ + }}{{\text{z}}^2}{\text{ - xy - yz - xz)}}$
Therefore, $\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}{\text{ = }}\dfrac{{3({{\text{x}}^2}{\text{ + }}{{\text{y}}^2}{\text{ + }}{{\text{z}}^2}{\text{ - xy - yz - xz)}}}}{{({\text{x + y + z)}}({{\text{x}}^2}{\text{ + }}{{\text{y}}^2}{\text{ + }}{{\text{z}}^2}{\text{ - xy - yz - xz)}}}}$ $\Rightarrow$ $\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}{\text{ = }}\dfrac{3}{{({\text{x + y + z)}}}}$
Now, $\left( {\dfrac{\partial }{{\partial {\text{x}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{y}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{z}}}}} \right)\left( {\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}} \right){\text{ = }}{\left( {\dfrac{\partial }{{\partial {\text{x}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{y}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{z}}}}} \right)^2}{\text{u}}$
$\dfrac{\partial }{{\partial {\text{x}}}}\left( {\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}} \right){\text{ = }}\dfrac{\partial }{{\partial {\text{x}}}}\left( {\dfrac{3}{{({\text{x + y + z)}}}}} \right)$ = $\dfrac{{ - 3}}{{{{({\text{x + y + z)}}}^2}}}$
Similarly, we get
$\dfrac{\partial }{{\partial {\text{y}}}}\left( {\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}} \right){\text{ = }}\dfrac{{ - 3}}{{{{({\text{x + y + z)}}}^2}}}$ and $\dfrac{\partial }{{\partial {\text{z}}}}\left( {\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}} \right){\text{ = }}\dfrac{{ - 3}}{{{{({\text{x + y + z)}}}^2}}}$
So, we get ${\left( {\dfrac{\partial }{{\partial {\text{u}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{y}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{z}}}}} \right)^2}{\text{u = }}\dfrac{{ - 3}}{{{{({\text{x + y + z)}}}^2}}}{\text{ + }}\dfrac{{ - 3}}{{{{({\text{x + y + z)}}}^2}}}{\text{ + }}\dfrac{{ - 3}}{{{{({\text{x + y + z)}}}^2}}}$
Therefore, ${\left( {\dfrac{\partial }{{\partial {\text{u}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{y}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{z}}}}} \right)^2}{\text{u = }}\dfrac{{ - 9}}{{{{({\text{x + y + z)}}}^2}}}$
Comparing it with ${\left( {\dfrac{\partial }{{\partial {\text{x}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{y}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{z}}}}} \right)^2}{\text{u = }}\dfrac{{ - {\text{k}}}}{{{{({\text{x + y + z)}}}^2}}}$, we get
k = 9
So, Option (C) is the correct answer.
Note: When we come up with such types of questions, we have to use partial differentiation to solve the problem. The rules to do partial differentiation of a function is the same as that of normal differentiation. In partial differentiation we keep one variable as constant and we differentiate the other variable. Most of the students make a mistake while solving such types of questions. They do normal differentiation instead of partial differentiation because they get confused between the sign of integration. Normal integration is represented by d and partial differentiation is represented by $\partial $.
Complete step-by-step answer:
Now, we will use partial differentiation. It is denoted by $\partial $. We are given ${\text{u = log(}}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz)}}$. So, partially differentiating u with respect to x, we get
$\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ = }}\dfrac{{3{{\text{x}}^2}{\text{ - 3yz}}}}{{{\text{(}}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz)}}}}$
Similarly, partially differentiating u with respect to y and z, we get
$\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ = }}\dfrac{{3{{\text{y}}^2}{\text{ - 3xz}}}}{{{\text{(}}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz)}}}}$
$\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}{\text{ = }}\dfrac{{3{{\text{z}}^2}{\text{ - 3xy}}}}{{{\text{(}}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz)}}}}$
On adding all the three partial derivatives, we get
$\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}{\text{ = }}\dfrac{{3{{\text{x}}^2}{\text{ + 3}}{{\text{y}}^2}{\text{ + 3}}{{\text{z}}^2}{\text{ - 3xy - 3yz - 3xz}}}}{{{\text{(}}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz)}}}}$
$\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}{\text{ = }}\dfrac{{3({{\text{x}}^2}{\text{ + }}{{\text{y}}^2}{\text{ + }}{{\text{z}}^2}{\text{) - 3(xy + yz + xz)}}}}{{{\text{(}}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz)}}}}$
$\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}{\text{ = }}\dfrac{{3({{\text{x}}^2}{\text{ + }}{{\text{y}}^2}{\text{ + }}{{\text{z}}^2}{\text{ - xy - yz - xz)}}}}{{{\text{(}}{{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz)}}}}$
Now, we know that ${{\text{x}}^3}{\text{ + }}{{\text{y}}^3}{\text{ + }}{{\text{z}}^3}{\text{ - 3xyz = (x + y + z)(}}{{\text{x}}^2}{\text{ + }}{{\text{y}}^2}{\text{ + }}{{\text{z}}^2}{\text{ - xy - yz - xz)}}$
Therefore, $\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}{\text{ = }}\dfrac{{3({{\text{x}}^2}{\text{ + }}{{\text{y}}^2}{\text{ + }}{{\text{z}}^2}{\text{ - xy - yz - xz)}}}}{{({\text{x + y + z)}}({{\text{x}}^2}{\text{ + }}{{\text{y}}^2}{\text{ + }}{{\text{z}}^2}{\text{ - xy - yz - xz)}}}}$ $\Rightarrow$ $\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}{\text{ = }}\dfrac{3}{{({\text{x + y + z)}}}}$
Now, $\left( {\dfrac{\partial }{{\partial {\text{x}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{y}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{z}}}}} \right)\left( {\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}} \right){\text{ = }}{\left( {\dfrac{\partial }{{\partial {\text{x}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{y}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{z}}}}} \right)^2}{\text{u}}$
$\dfrac{\partial }{{\partial {\text{x}}}}\left( {\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}} \right){\text{ = }}\dfrac{\partial }{{\partial {\text{x}}}}\left( {\dfrac{3}{{({\text{x + y + z)}}}}} \right)$ = $\dfrac{{ - 3}}{{{{({\text{x + y + z)}}}^2}}}$
Similarly, we get
$\dfrac{\partial }{{\partial {\text{y}}}}\left( {\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}} \right){\text{ = }}\dfrac{{ - 3}}{{{{({\text{x + y + z)}}}^2}}}$ and $\dfrac{\partial }{{\partial {\text{z}}}}\left( {\dfrac{{\partial {\text{u}}}}{{\partial {\text{x}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{y}}}}{\text{ + }}\dfrac{{\partial {\text{u}}}}{{\partial {\text{z}}}}} \right){\text{ = }}\dfrac{{ - 3}}{{{{({\text{x + y + z)}}}^2}}}$
So, we get ${\left( {\dfrac{\partial }{{\partial {\text{u}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{y}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{z}}}}} \right)^2}{\text{u = }}\dfrac{{ - 3}}{{{{({\text{x + y + z)}}}^2}}}{\text{ + }}\dfrac{{ - 3}}{{{{({\text{x + y + z)}}}^2}}}{\text{ + }}\dfrac{{ - 3}}{{{{({\text{x + y + z)}}}^2}}}$
Therefore, ${\left( {\dfrac{\partial }{{\partial {\text{u}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{y}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{z}}}}} \right)^2}{\text{u = }}\dfrac{{ - 9}}{{{{({\text{x + y + z)}}}^2}}}$
Comparing it with ${\left( {\dfrac{\partial }{{\partial {\text{x}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{y}}}}{\text{ + }}\dfrac{\partial }{{\partial {\text{z}}}}} \right)^2}{\text{u = }}\dfrac{{ - {\text{k}}}}{{{{({\text{x + y + z)}}}^2}}}$, we get
k = 9
So, Option (C) is the correct answer.
Note: When we come up with such types of questions, we have to use partial differentiation to solve the problem. The rules to do partial differentiation of a function is the same as that of normal differentiation. In partial differentiation we keep one variable as constant and we differentiate the other variable. Most of the students make a mistake while solving such types of questions. They do normal differentiation instead of partial differentiation because they get confused between the sign of integration. Normal integration is represented by d and partial differentiation is represented by $\partial $.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

