
If u = f(r), where \[{{r}^{2}}={{x}^{2}}+{{y}^{2}}\] then \[\left( \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}} \right)=\]
\[\left( \text{a} \right)\text{ }{{f}^{'}}\left( r \right)\]
\[\left( \text{b} \right)\text{ }{{f}^{''}}\left( r \right)+{{f}^{'}}\left( r \right)\]
\[\left( \text{c} \right)\text{ }{{f}^{''}}\left( r \right)+\dfrac{1}{r}{{f}^{'}}\left( r \right)\]
\[\left( \text{d} \right)\text{ }{{f}^{'}}\left( r \right)+r{{f}^{'}}\left( r \right)\]
Answer
597.6k+ views
Hint: To solve the given question, we will first find out about the operation \[\partial \] and what it does when it is applied on some variable or function. Then, we will find the value of \[\dfrac{\partial u}{\partial x}\] by differentiating u = f(r) and we will use \[\dfrac{\partial u}{\partial x}=\dfrac{\partial u}{\partial r}\times \dfrac{\partial r}{\partial x}.\] After getting the value of \[\dfrac{\partial u}{\partial x},\] we will differentiate it once again and we will find \[\dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}\] in the terms of x, r, \[\dfrac{\partial u}{\partial r}\] and \[\dfrac{{{\partial }^{2}}u}{\partial {{r}^{2}}}.\] Similarly, we will find the value of \[\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}\] and then we will add \[\dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}\] and \[\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}\] to get the final answer.
Complete step-by-step answer:
Before we solve the given question, we must know what is \[\partial \] operator. \[\partial \] operator is the operator for partial differentiation of a variable with respect to another variable where we treat the other variables as constant. Now, we are given that,
\[u=f\left( r \right).....\left( i \right)\]
\[{{r}^{2}}={{x}^{2}}+{{y}^{2}}.....\left( ii \right)\]
Now, we will differentiate (i) with respect to x on both sides. Thus, we will get,
\[\dfrac{\partial u}{\partial x}=\dfrac{\partial f\left( r \right)}{\partial x}......\left( iii \right)\]
We can write (iii) also in the following manner,
\[\Rightarrow \dfrac{\partial u}{\partial x}=\dfrac{\partial f\left( r \right)}{\partial x}\times \dfrac{\partial r}{\partial r}\]
\[\Rightarrow \dfrac{\partial u}{\partial x}=\dfrac{\partial f\left( r \right)}{\partial r}\times \dfrac{\partial r}{\partial x}\]
We will write \[\dfrac{\partial f\left( r \right)}{\partial r}\] as f’(r) in the above equation. Thus, we will get,
\[\Rightarrow \dfrac{\partial u}{\partial x}={{f}^{'}}\left( r \right)\times \dfrac{\partial r}{\partial x}......\left( iv \right)\]
Now, we will partially differentiate (ii) with respect to x, treating y as constant. Thus, we will get,
\[\dfrac{\partial }{\partial x}\left( {{r}^{2}} \right)=\dfrac{\partial }{\partial x}\left( {{x}^{2}} \right)+\dfrac{\partial }{\partial x}\left( {{y}^{2}} \right)\]
Now, the differentiation of \[{{x}^{2}}\] is 2x and \[{{y}^{2}}\] is zero because y is constant and differentiation of constant is zero. Thus, we will get,
\[\dfrac{\partial }{\partial x}\left( {{r}^{2}} \right)=2x+0\]
\[\Rightarrow \dfrac{\partial }{\partial x}\left( {{r}^{2}} \right)=2x\]
Multiplying numerator and denominator by \[\partial r\] on LHS, we get,
\[\Rightarrow \dfrac{\partial }{\partial x}\left( {{r}^{2}} \right)\times \dfrac{\partial r}{\partial r}=2x\]
\[\Rightarrow \dfrac{\partial }{\partial r}\left( {{r}^{2}} \right)\times \dfrac{\partial r}{\partial x}=2x\]
\[\Rightarrow 2r\times \dfrac{\partial r}{\partial x}=2x\]
\[\Rightarrow \dfrac{r\partial r}{\partial x}=x\]
\[\Rightarrow \dfrac{\partial r}{\partial x}=\dfrac{x}{r}.....\left( v \right)\]
Now, we will put the value of \[\dfrac{\partial r}{\partial x}\] from (v) to (iv). Thus, we will get,
\[\Rightarrow \dfrac{\partial u}{\partial x}={{f}^{'}}\left( r \right).\dfrac{x}{r}.....\left( vi \right)\]
Now, we will differentiate (vi) with respect to x again. Thus, we will get,
\[\dfrac{\partial }{\partial x}\left( \dfrac{\partial u}{\partial x} \right)=\dfrac{\partial }{\partial x}\left[ {{f}^{'}}\left( r \right).\dfrac{x}{r} \right]\]
\[\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=\dfrac{\partial }{\partial x}\left[ {{f}^{'}}\left( r \right).\dfrac{x}{r} \right]\]
Now, we will use the product rule of differentiation in the above equation. This rule says that,
\[\dfrac{d}{da}\left[ P\left( a \right).Q\left( a \right) \right]=Q\left( a \right).\dfrac{d}{da}\left[ P\left( a \right) \right]+P\left( a \right).\dfrac{d}{da}\left[ Q\left( a \right) \right]\]
Thus, we will get,
\[\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=\dfrac{x}{r}\left[ \dfrac{\partial }{\partial x}\left( {{f}^{'}}\left( r \right) \right) \right]+{{f}^{'}}\left( r \right)\left[ \dfrac{\partial }{\partial x}\left( \dfrac{x}{r} \right) \right]......\left( vii \right)\]
Now, we will find the value of \[\dfrac{\partial }{\partial x}\left( {{f}^{'}}\left( r \right) \right).\] For this, we will use the chain rule of differentiation. According to this rule, we have,
\[\dfrac{d}{dx}\left[ A\left( B\left( x \right) \right) \right]={{A}^{'}}\left( B\left( x \right) \right)\times {{B}^{'}}\left( x \right)\]
Thus, we will get,
\[\dfrac{\partial }{\partial x}\left( {{f}^{'}}\left( r \right) \right)={{f}^{''}}\left( r \right).\dfrac{\partial r}{\partial x}\]
Now, we will put the value of \[\dfrac{\partial r}{\partial x}\] from (v) to the above equation. Thus, we will get,
\[\dfrac{\partial }{\partial x}\left( {{f}^{'}}\left( r \right) \right)={{f}^{''}}\left( r \right).\dfrac{x}{r}......\left( viii \right)\]
Now, we will find the value of \[\dfrac{\partial }{\partial x}\left( \dfrac{x}{r} \right).\] For this, we will use the division rule of differentiation. According to this rule, we have,
\[\dfrac{d}{dx}\left( \dfrac{A}{B} \right)=\dfrac{B.dA-A.dB}{{{B}^{2}}}\]
Thus, we will get,
\[\dfrac{\partial }{\partial x}\left( \dfrac{x}{r} \right)=\dfrac{r.\left( \dfrac{\partial x}{\partial x} \right)-x.\left( \dfrac{\partial r}{\partial x} \right)}{{{r}^{2}}}\]
\[\Rightarrow \dfrac{\partial }{\partial x}\left( \dfrac{x}{r} \right)=\dfrac{r-x\left( \dfrac{\partial r}{\partial x} \right)}{{{r}^{2}}}\]
Now, we will put the value of \[\dfrac{\partial r}{\partial u}\] from (v) to the above equation. Thus, we will get,
\[\Rightarrow \dfrac{\partial }{\partial x}\left( \dfrac{x}{r} \right)=\dfrac{r-x\left( \dfrac{x}{r} \right)}{{{r}^{2}}}=\dfrac{{{r}^{2}}-{{x}^{2}}}{{{r}^{3}}}......\left( ix \right)\]
From (vii), (viii) and (ix), we have,
\[\dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=\dfrac{x}{r}\left[ {{f}^{''}}\left( r \right).\dfrac{x}{r} \right]+{{f}^{'}}\left( r \right)\left[ \dfrac{{{r}^{2}}-{{x}^{2}}}{{{r}^{3}}} \right]\]
\[\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}={{f}^{''}}\left( r \right)\dfrac{{{x}^{2}}}{{{r}^{2}}}+{{f}^{'}}\left( r \right).\dfrac{\left( {{r}^{2}}-{{x}^{2}} \right)}{{{r}^{3}}}......\left( x \right)\]
Similarly,
\[\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right).\dfrac{{{y}^{2}}}{{{r}^{2}}}+{{f}^{'}}\left( r \right).\dfrac{\left( {{r}^{2}}-{{y}^{2}} \right)}{{{r}^{3}}}......\left( xi \right)\]
On adding (x) and (xi), we get,
\[\dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right).\dfrac{{{x}^{2}}}{{{r}^{2}}}+{{f}^{'}}\left( r \right).\dfrac{\left( {{r}^{2}}-{{x}^{2}} \right)}{{{r}^{3}}}+{{f}^{''}}\left( r \right).\dfrac{{{y}^{2}}}{{{r}^{2}}}+{{f}^{'}}\left( r \right).\dfrac{\left( {{r}^{2}}-{{y}^{2}} \right)}{{{r}^{3}}}\]
\[\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right)\left[ \dfrac{{{x}^{2}}}{{{r}^{2}}}+\dfrac{{{y}^{2}}}{{{r}^{2}}} \right]+\dfrac{{{f}^{'}}\left( r \right)}{{{r}^{3}}}\left[ {{r}^{2}}-{{x}^{2}}+{{r}^{2}}-{{y}^{2}} \right]\]
\[\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right)\left[ \dfrac{{{r}^{2}}}{{{r}^{2}}} \right]+\dfrac{{{f}^{'}}\left( r \right)}{{{r}^{3}}}\left[ 2{{r}^{2}}-{{r}^{2}} \right]\]
\[\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right)+\dfrac{{{f}^{'}}\left( r \right)}{{{r}^{3}}}.{{r}^{2}}\]
\[\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right)+\dfrac{{{f}^{'}}\left( r \right)}{r}\]
Hence, the option (c) is the right answer.
Note: While solving the question, we have assumed that the function U is differentiable two times with respect to \[{{x}_{1}},\] r and y, i.e. the double differentiation of U with respect to x and y exists. Another thing to remember is that while differentiating partially, we take all the remaining variables as constant as long as there is no relation given between them.
Complete step-by-step answer:
Before we solve the given question, we must know what is \[\partial \] operator. \[\partial \] operator is the operator for partial differentiation of a variable with respect to another variable where we treat the other variables as constant. Now, we are given that,
\[u=f\left( r \right).....\left( i \right)\]
\[{{r}^{2}}={{x}^{2}}+{{y}^{2}}.....\left( ii \right)\]
Now, we will differentiate (i) with respect to x on both sides. Thus, we will get,
\[\dfrac{\partial u}{\partial x}=\dfrac{\partial f\left( r \right)}{\partial x}......\left( iii \right)\]
We can write (iii) also in the following manner,
\[\Rightarrow \dfrac{\partial u}{\partial x}=\dfrac{\partial f\left( r \right)}{\partial x}\times \dfrac{\partial r}{\partial r}\]
\[\Rightarrow \dfrac{\partial u}{\partial x}=\dfrac{\partial f\left( r \right)}{\partial r}\times \dfrac{\partial r}{\partial x}\]
We will write \[\dfrac{\partial f\left( r \right)}{\partial r}\] as f’(r) in the above equation. Thus, we will get,
\[\Rightarrow \dfrac{\partial u}{\partial x}={{f}^{'}}\left( r \right)\times \dfrac{\partial r}{\partial x}......\left( iv \right)\]
Now, we will partially differentiate (ii) with respect to x, treating y as constant. Thus, we will get,
\[\dfrac{\partial }{\partial x}\left( {{r}^{2}} \right)=\dfrac{\partial }{\partial x}\left( {{x}^{2}} \right)+\dfrac{\partial }{\partial x}\left( {{y}^{2}} \right)\]
Now, the differentiation of \[{{x}^{2}}\] is 2x and \[{{y}^{2}}\] is zero because y is constant and differentiation of constant is zero. Thus, we will get,
\[\dfrac{\partial }{\partial x}\left( {{r}^{2}} \right)=2x+0\]
\[\Rightarrow \dfrac{\partial }{\partial x}\left( {{r}^{2}} \right)=2x\]
Multiplying numerator and denominator by \[\partial r\] on LHS, we get,
\[\Rightarrow \dfrac{\partial }{\partial x}\left( {{r}^{2}} \right)\times \dfrac{\partial r}{\partial r}=2x\]
\[\Rightarrow \dfrac{\partial }{\partial r}\left( {{r}^{2}} \right)\times \dfrac{\partial r}{\partial x}=2x\]
\[\Rightarrow 2r\times \dfrac{\partial r}{\partial x}=2x\]
\[\Rightarrow \dfrac{r\partial r}{\partial x}=x\]
\[\Rightarrow \dfrac{\partial r}{\partial x}=\dfrac{x}{r}.....\left( v \right)\]
Now, we will put the value of \[\dfrac{\partial r}{\partial x}\] from (v) to (iv). Thus, we will get,
\[\Rightarrow \dfrac{\partial u}{\partial x}={{f}^{'}}\left( r \right).\dfrac{x}{r}.....\left( vi \right)\]
Now, we will differentiate (vi) with respect to x again. Thus, we will get,
\[\dfrac{\partial }{\partial x}\left( \dfrac{\partial u}{\partial x} \right)=\dfrac{\partial }{\partial x}\left[ {{f}^{'}}\left( r \right).\dfrac{x}{r} \right]\]
\[\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=\dfrac{\partial }{\partial x}\left[ {{f}^{'}}\left( r \right).\dfrac{x}{r} \right]\]
Now, we will use the product rule of differentiation in the above equation. This rule says that,
\[\dfrac{d}{da}\left[ P\left( a \right).Q\left( a \right) \right]=Q\left( a \right).\dfrac{d}{da}\left[ P\left( a \right) \right]+P\left( a \right).\dfrac{d}{da}\left[ Q\left( a \right) \right]\]
Thus, we will get,
\[\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=\dfrac{x}{r}\left[ \dfrac{\partial }{\partial x}\left( {{f}^{'}}\left( r \right) \right) \right]+{{f}^{'}}\left( r \right)\left[ \dfrac{\partial }{\partial x}\left( \dfrac{x}{r} \right) \right]......\left( vii \right)\]
Now, we will find the value of \[\dfrac{\partial }{\partial x}\left( {{f}^{'}}\left( r \right) \right).\] For this, we will use the chain rule of differentiation. According to this rule, we have,
\[\dfrac{d}{dx}\left[ A\left( B\left( x \right) \right) \right]={{A}^{'}}\left( B\left( x \right) \right)\times {{B}^{'}}\left( x \right)\]
Thus, we will get,
\[\dfrac{\partial }{\partial x}\left( {{f}^{'}}\left( r \right) \right)={{f}^{''}}\left( r \right).\dfrac{\partial r}{\partial x}\]
Now, we will put the value of \[\dfrac{\partial r}{\partial x}\] from (v) to the above equation. Thus, we will get,
\[\dfrac{\partial }{\partial x}\left( {{f}^{'}}\left( r \right) \right)={{f}^{''}}\left( r \right).\dfrac{x}{r}......\left( viii \right)\]
Now, we will find the value of \[\dfrac{\partial }{\partial x}\left( \dfrac{x}{r} \right).\] For this, we will use the division rule of differentiation. According to this rule, we have,
\[\dfrac{d}{dx}\left( \dfrac{A}{B} \right)=\dfrac{B.dA-A.dB}{{{B}^{2}}}\]
Thus, we will get,
\[\dfrac{\partial }{\partial x}\left( \dfrac{x}{r} \right)=\dfrac{r.\left( \dfrac{\partial x}{\partial x} \right)-x.\left( \dfrac{\partial r}{\partial x} \right)}{{{r}^{2}}}\]
\[\Rightarrow \dfrac{\partial }{\partial x}\left( \dfrac{x}{r} \right)=\dfrac{r-x\left( \dfrac{\partial r}{\partial x} \right)}{{{r}^{2}}}\]
Now, we will put the value of \[\dfrac{\partial r}{\partial u}\] from (v) to the above equation. Thus, we will get,
\[\Rightarrow \dfrac{\partial }{\partial x}\left( \dfrac{x}{r} \right)=\dfrac{r-x\left( \dfrac{x}{r} \right)}{{{r}^{2}}}=\dfrac{{{r}^{2}}-{{x}^{2}}}{{{r}^{3}}}......\left( ix \right)\]
From (vii), (viii) and (ix), we have,
\[\dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=\dfrac{x}{r}\left[ {{f}^{''}}\left( r \right).\dfrac{x}{r} \right]+{{f}^{'}}\left( r \right)\left[ \dfrac{{{r}^{2}}-{{x}^{2}}}{{{r}^{3}}} \right]\]
\[\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}={{f}^{''}}\left( r \right)\dfrac{{{x}^{2}}}{{{r}^{2}}}+{{f}^{'}}\left( r \right).\dfrac{\left( {{r}^{2}}-{{x}^{2}} \right)}{{{r}^{3}}}......\left( x \right)\]
Similarly,
\[\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right).\dfrac{{{y}^{2}}}{{{r}^{2}}}+{{f}^{'}}\left( r \right).\dfrac{\left( {{r}^{2}}-{{y}^{2}} \right)}{{{r}^{3}}}......\left( xi \right)\]
On adding (x) and (xi), we get,
\[\dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right).\dfrac{{{x}^{2}}}{{{r}^{2}}}+{{f}^{'}}\left( r \right).\dfrac{\left( {{r}^{2}}-{{x}^{2}} \right)}{{{r}^{3}}}+{{f}^{''}}\left( r \right).\dfrac{{{y}^{2}}}{{{r}^{2}}}+{{f}^{'}}\left( r \right).\dfrac{\left( {{r}^{2}}-{{y}^{2}} \right)}{{{r}^{3}}}\]
\[\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right)\left[ \dfrac{{{x}^{2}}}{{{r}^{2}}}+\dfrac{{{y}^{2}}}{{{r}^{2}}} \right]+\dfrac{{{f}^{'}}\left( r \right)}{{{r}^{3}}}\left[ {{r}^{2}}-{{x}^{2}}+{{r}^{2}}-{{y}^{2}} \right]\]
\[\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right)\left[ \dfrac{{{r}^{2}}}{{{r}^{2}}} \right]+\dfrac{{{f}^{'}}\left( r \right)}{{{r}^{3}}}\left[ 2{{r}^{2}}-{{r}^{2}} \right]\]
\[\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right)+\dfrac{{{f}^{'}}\left( r \right)}{{{r}^{3}}}.{{r}^{2}}\]
\[\Rightarrow \dfrac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\dfrac{{{\partial }^{2}}u}{\partial {{y}^{2}}}={{f}^{''}}\left( r \right)+\dfrac{{{f}^{'}}\left( r \right)}{r}\]
Hence, the option (c) is the right answer.
Note: While solving the question, we have assumed that the function U is differentiable two times with respect to \[{{x}_{1}},\] r and y, i.e. the double differentiation of U with respect to x and y exists. Another thing to remember is that while differentiating partially, we take all the remaining variables as constant as long as there is no relation given between them.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

