
If u = a – b and v = a + b and |a| = |b| = 2, then \[\left| u\times v \right|\] is equal to (Note: a and b are vectors).
\[\left( a \right)2\sqrt{16-{{\left( a.b \right)}^{2}}}\]
\[\left( b \right)\sqrt{16-{{\left( a.b \right)}^{2}}}\]
\[\left( c \right)2\sqrt{4-{{\left( a.b \right)}^{2}}}\]
\[\left( d \right)2\sqrt{4+{{\left( a.b \right)}^{2}}}\]
Answer
579k+ views
Hint: To solve this we will first try to calculate the value of \[\left| u\times v \right|\] in terms of a and b. For that we will substitute u = a – b and v = a + b and solve using the formula, \[{{\left| a\times b \right|}^{2}}+{{\left( a.b \right)}^{2}}={{\left( ab\sin \theta \right)}^{2}}+{{\left( ab\cos \theta \right)}^{2}}\] and \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.\] Finally, we will use \[\left| a \right|=\left| b \right|=2\] to get the result.
Complete step-by-step answer:
We are given that, u = a – b and v = a + b and |a| = 2 and |b| = 2. Then to find the value of \[\left| u\times v \right|\] we have u = a – b and v = a + b.
\[\Rightarrow \left| u\times v \right|=\left| \left( a-b \right)\times \left( a+b \right) \right|\]
Now, any vector cross product with itself is 0.
\[\Rightarrow a\times a=0;b\times b=0\]
\[\Rightarrow \left| u\times v \right|=2\left| a\times b \right|.....\left( i \right)\]
Now, we have a formula relating \[{{\left| a\times b \right|}^{2}}\] and \[{{\left( a.b \right)}^{2}}\] with \[\sin \theta \] and \[\cos \theta .\] It is given as,
\[{{\left| a\times b \right|}^{2}}+{{\left( a.b \right)}^{2}}={{\left( ab\sin \theta \right)}^{2}}+{{\left( ab\cos \theta \right)}^{2}}\]
\[\Rightarrow {{\left| a\times b \right|}^{2}}+{{\left( a.b \right)}^{2}}={{a}^{2}}{{b}^{2}}\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)\]
As, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.\]
\[\Rightarrow {{\left| a\times b \right|}^{2}}+{{\left( a.b \right)}^{2}}={{a}^{2}}{{b}^{2}}\times 1\]
\[\Rightarrow {{\left| a\times b \right|}^{2}}+{{\left( a.b \right)}^{2}}={{a}^{2}}{{b}^{2}}\]
\[\Rightarrow {{\left| a\times b \right|}^{2}}={{a}^{2}}{{b}^{2}}-{{\left( a.b \right)}^{2}}\]
\[\Rightarrow {{\left| a\times b \right|}^{2}}=\sqrt{{{a}^{2}}{{b}^{2}}-{{\left( a.b \right)}^{2}}}.....\left( ii \right)\]
Now, let us substitute the value obtained in equation (i) in equation (ii).
\[\Rightarrow \left| u\times v \right|=2\left| a\times b \right|\]
\[\Rightarrow \left| u\times v \right|=2\sqrt{{{a}^{2}}{{b}^{2}}-{{\left( ab \right)}^{2}}}\]
Now, as \[\left| a \right|=\left| b \right|=2,\]
\[{{a}^{2}}={{2}^{2}}\]
\[\left| {{b}^{2}} \right|={{\left| b \right|}^{2}}={{b}^{2}}\]
\[{{b}^{2}}={{2}^{2}}\]
Substituting these values in the above equation, we get,
\[\Rightarrow \left| u\times v \right|=2\sqrt{{{2}^{2}}{{2}^{2}}-{{\left( a.b \right)}^{2}}}\]
Hence, the value of \[\left| u\times v \right|=2\sqrt{16-{{\left( a.b \right)}^{2}}}.\]
So, the correct answer is “Option a”.
Note: The point of confusion can be using (a) = 2 in place of |a| = 2. This is correct as \[{{\left| a \right|}^{2}}={{a}^{2}}\] as ‘a’ be any value positive or negative, \[{{a}^{2}}\] always will be positive \[\Rightarrow {{\left| a \right|}^{2}}={{a}^{2}}\] as \[\left| a \right|\ge 0,\] ‘a’ be any value. The point is we cannot use a = 2 directly. We need to use \[{{a}^{2}}={{2}^{2}}\] but not a = 2, as |a| = 2, ‘a’ can be negative 2 or positive as well.
Complete step-by-step answer:
We are given that, u = a – b and v = a + b and |a| = 2 and |b| = 2. Then to find the value of \[\left| u\times v \right|\] we have u = a – b and v = a + b.
\[\Rightarrow \left| u\times v \right|=\left| \left( a-b \right)\times \left( a+b \right) \right|\]
Now, any vector cross product with itself is 0.
\[\Rightarrow a\times a=0;b\times b=0\]
\[\Rightarrow \left| u\times v \right|=2\left| a\times b \right|.....\left( i \right)\]
Now, we have a formula relating \[{{\left| a\times b \right|}^{2}}\] and \[{{\left( a.b \right)}^{2}}\] with \[\sin \theta \] and \[\cos \theta .\] It is given as,
\[{{\left| a\times b \right|}^{2}}+{{\left( a.b \right)}^{2}}={{\left( ab\sin \theta \right)}^{2}}+{{\left( ab\cos \theta \right)}^{2}}\]
\[\Rightarrow {{\left| a\times b \right|}^{2}}+{{\left( a.b \right)}^{2}}={{a}^{2}}{{b}^{2}}\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)\]
As, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.\]
\[\Rightarrow {{\left| a\times b \right|}^{2}}+{{\left( a.b \right)}^{2}}={{a}^{2}}{{b}^{2}}\times 1\]
\[\Rightarrow {{\left| a\times b \right|}^{2}}+{{\left( a.b \right)}^{2}}={{a}^{2}}{{b}^{2}}\]
\[\Rightarrow {{\left| a\times b \right|}^{2}}={{a}^{2}}{{b}^{2}}-{{\left( a.b \right)}^{2}}\]
\[\Rightarrow {{\left| a\times b \right|}^{2}}=\sqrt{{{a}^{2}}{{b}^{2}}-{{\left( a.b \right)}^{2}}}.....\left( ii \right)\]
Now, let us substitute the value obtained in equation (i) in equation (ii).
\[\Rightarrow \left| u\times v \right|=2\left| a\times b \right|\]
\[\Rightarrow \left| u\times v \right|=2\sqrt{{{a}^{2}}{{b}^{2}}-{{\left( ab \right)}^{2}}}\]
Now, as \[\left| a \right|=\left| b \right|=2,\]
\[{{a}^{2}}={{2}^{2}}\]
\[\left| {{b}^{2}} \right|={{\left| b \right|}^{2}}={{b}^{2}}\]
\[{{b}^{2}}={{2}^{2}}\]
Substituting these values in the above equation, we get,
\[\Rightarrow \left| u\times v \right|=2\sqrt{{{2}^{2}}{{2}^{2}}-{{\left( a.b \right)}^{2}}}\]
Hence, the value of \[\left| u\times v \right|=2\sqrt{16-{{\left( a.b \right)}^{2}}}.\]
So, the correct answer is “Option a”.
Note: The point of confusion can be using (a) = 2 in place of |a| = 2. This is correct as \[{{\left| a \right|}^{2}}={{a}^{2}}\] as ‘a’ be any value positive or negative, \[{{a}^{2}}\] always will be positive \[\Rightarrow {{\left| a \right|}^{2}}={{a}^{2}}\] as \[\left| a \right|\ge 0,\] ‘a’ be any value. The point is we cannot use a = 2 directly. We need to use \[{{a}^{2}}={{2}^{2}}\] but not a = 2, as |a| = 2, ‘a’ can be negative 2 or positive as well.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

