
If three mutually perpendicular lines have direction cosines \[\left( {{l}_{1}},{{m}_{1}},{{n}_{1}} \right),\left( {{l}_{2}},{{m}_{2}},{{n}_{2}} \right)\] and \[\left( {{l}_{3}},{{m}_{3}},{{n}_{3}} \right)\] , then the line having direction cosines \[{{l}_{1}}+{{l}_{2}}+{{l}_{3}},{{m}_{1}}+{{m}_{2}}+{{m}_{3}}\] and \[{{n}_{1}}+{{n}_{2}}+{{n}_{3}}\] make an angle of ….....with each other.
A. $ 0{}^\circ $
B. $ 30{}^\circ $
C. $ 60{}^\circ $
D. $ 90{}^\circ $
Answer
598.5k+ views
Hint: Using the direction cosines write the vectors of given 3 mutually perpendicular lines. Assume the required line to be some variable. By using the condition of perpendicularity : dot product of2 perpendicular vectors is 0. Find the 3 relations associated to 3 given mutually perpendicular vectors. Now, find the dot product of assumed variable vectors with the given 3 mutually perpendicular vectors. From which you get the angle between them. By dot product rule, we have 2 vectors of x degrees angle between them, we say:
$ \overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta $
Complete step-by-step answer:
The given direction cosines of 3 mutually perpendicular vectors are given by the terms: $ \left( {{l}_{1}},{{m}_{1}},{{n}_{1}} \right)\text{ }\left( {{l}_{2}},{{m}_{2}},{{n}_{2}} \right)\text{ }\left( {{l}_{3}},{{m}_{3}},{{n}_{3}} \right) $
Let this 3 mutually perpendicular vectors be named a, b, c:
$ a={{l}_{1}}i+{{m}_{1}}j+{{n}_{1}}k $ ; $ b={{l}_{2}}i+{{m}_{2}}j+{{n}_{2}}k $ ; $ c={{l}_{3}}i+{{m}_{3}}j+{{n}_{3}}k $
The direction cosine of required line for which we need angle:
Let this line be assumed as variable p, (for now)
$ p=\left( {{l}_{1}}+{{l}_{2}}+{{l}_{3}} \right)\hat{i}+\left( {{m}_{1}}+{{m}_{2}}+{{m}_{3}} \right)\hat{j}+\left( {{n}_{1}}+{{n}_{2}}+{{n}_{3}} \right)\hat{k} $
By basic knowledge of geometry, if a, b are perpendicular we get : $ \overline{a}\cdot \overline{b}=0 $
As we know a, b, c are mutually perpendicular.
By applying above rule 3 times to 3 possible pairs, we get:
$ {{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}=0 $ ; $ {{l}_{2}}{{l}_{3}}+{{m}_{2}}{{m}_{3}}+{{n}_{2}}{{n}_{3}}=0 $ ; $ {{l}_{3}}{{l}_{1}}+{{m}_{3}}{{m}_{1}}+{{n}_{3}}{{n}_{1}}=0 $
As l, m, n are direction cosine by general maths, we can say:
$ {{l}_{1}}^{2}+{{m}_{1}}^{2}+{{n}_{1}}^{2}=1 $ ; $ {{l}_{2}}^{2}+{{m}_{2}}^{2}+{{n}_{2}}^{2}=1 $ ; $ {{l}_{3}}^{2}+{{m}_{3}}^{2}+{{n}_{3}}^{2}=1 $
Case-1: Dot product of a, n
By dot product we know: - $ \overline{a}\cdot \overline{b}=\left| \overline{a} \right|\left| \overline{b} \right|\cos x $
As these are direction cosines, we get $ \left| a \right|=\left| b \right|=\left| c \right|=\left| n \right|=1 $
By applying above if x is angle between a, n then:
$ \cos x=\left( {{l}_{1}}i+{{m}_{1}}j+{{n}_{1}}k \right)\left( \left( {{l}_{1}}+{{l}_{2}}+{{l}_{3}} \right)i+\left( {{m}_{1}}+{{m}_{2}}+{{m}_{3}} \right)j+\left( {{n}_{1}}+{{n}_{2}}+{{n}_{3}} \right)k \right) $
By simplifying the dot product above, we get $ \cos x $ to be:
$ \cos x={{l}_{1}}\left( {{l}_{1}}+{{l}_{2}}+{{l}_{3}} \right)+{{m}_{1}}\left( {{m}_{1}}+{{m}_{2}}+{{m}_{3}} \right)+{{n}_{1}}\left( {{n}_{1}}+{{n}_{2}}+{{n}_{3}} \right) $
By simplifying more the $ \cos x $ will get converted to:
$ \cos x={{l}_{1}}^{2}+{{l}_{1}}{{l}_{2}}+{{m}_{1}}^{2}+{{m}_{1}}{{m}_{2}}+{{m}_{1}}{{m}_{3}}+{{n}_{1}}^{2}+{{n}_{1}}{{n}_{2}}+{{n}_{1}}{{n}_{3}} $
By rearranging the terms in above equation, we get it as:
$ \cos x=\left( {{l}_{1}}^{2}+{{m}_{1}}^{2}+{{n}_{1}}^{2} \right)+\left( {{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}} \right)+\left( {{l}_{1}}{{l}_{3}}+{{m}_{1}}{{m}_{3}}+{{n}_{1}}{{n}_{3}} \right) $
By using the values of these expressions as calculated before, we get
$ \cos x=1+0+0=1 $
By applying $ {{\cos }^{-1}} $ on both sides of the equation, we get $ x=0{}^\circ $ .
Similarly, as only 1, 2, 3 positions change we can say that:
$ y=z=0{}^\circ $
By above 2 equations, we can say $ x=y=z=0 $ .
Hence, angle made by vector p with a, b, c are equal.
Option (a) is correct.
Note: (1) If you solve p.b, p.c you set the same result.
(2) The grouping of terms to use the equations known is crucial.
(3) Do the dot product carefully use $ i\cdot i=1\text{ }i\cdot j=0\text{ }i\cdot k=0 $ to solve.
$ \overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta $
Complete step-by-step answer:
The given direction cosines of 3 mutually perpendicular vectors are given by the terms: $ \left( {{l}_{1}},{{m}_{1}},{{n}_{1}} \right)\text{ }\left( {{l}_{2}},{{m}_{2}},{{n}_{2}} \right)\text{ }\left( {{l}_{3}},{{m}_{3}},{{n}_{3}} \right) $
Let this 3 mutually perpendicular vectors be named a, b, c:
$ a={{l}_{1}}i+{{m}_{1}}j+{{n}_{1}}k $ ; $ b={{l}_{2}}i+{{m}_{2}}j+{{n}_{2}}k $ ; $ c={{l}_{3}}i+{{m}_{3}}j+{{n}_{3}}k $
The direction cosine of required line for which we need angle:
Let this line be assumed as variable p, (for now)
$ p=\left( {{l}_{1}}+{{l}_{2}}+{{l}_{3}} \right)\hat{i}+\left( {{m}_{1}}+{{m}_{2}}+{{m}_{3}} \right)\hat{j}+\left( {{n}_{1}}+{{n}_{2}}+{{n}_{3}} \right)\hat{k} $
By basic knowledge of geometry, if a, b are perpendicular we get : $ \overline{a}\cdot \overline{b}=0 $
As we know a, b, c are mutually perpendicular.
By applying above rule 3 times to 3 possible pairs, we get:
$ {{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}}=0 $ ; $ {{l}_{2}}{{l}_{3}}+{{m}_{2}}{{m}_{3}}+{{n}_{2}}{{n}_{3}}=0 $ ; $ {{l}_{3}}{{l}_{1}}+{{m}_{3}}{{m}_{1}}+{{n}_{3}}{{n}_{1}}=0 $
As l, m, n are direction cosine by general maths, we can say:
$ {{l}_{1}}^{2}+{{m}_{1}}^{2}+{{n}_{1}}^{2}=1 $ ; $ {{l}_{2}}^{2}+{{m}_{2}}^{2}+{{n}_{2}}^{2}=1 $ ; $ {{l}_{3}}^{2}+{{m}_{3}}^{2}+{{n}_{3}}^{2}=1 $
Case-1: Dot product of a, n
By dot product we know: - $ \overline{a}\cdot \overline{b}=\left| \overline{a} \right|\left| \overline{b} \right|\cos x $
As these are direction cosines, we get $ \left| a \right|=\left| b \right|=\left| c \right|=\left| n \right|=1 $
By applying above if x is angle between a, n then:
$ \cos x=\left( {{l}_{1}}i+{{m}_{1}}j+{{n}_{1}}k \right)\left( \left( {{l}_{1}}+{{l}_{2}}+{{l}_{3}} \right)i+\left( {{m}_{1}}+{{m}_{2}}+{{m}_{3}} \right)j+\left( {{n}_{1}}+{{n}_{2}}+{{n}_{3}} \right)k \right) $
By simplifying the dot product above, we get $ \cos x $ to be:
$ \cos x={{l}_{1}}\left( {{l}_{1}}+{{l}_{2}}+{{l}_{3}} \right)+{{m}_{1}}\left( {{m}_{1}}+{{m}_{2}}+{{m}_{3}} \right)+{{n}_{1}}\left( {{n}_{1}}+{{n}_{2}}+{{n}_{3}} \right) $
By simplifying more the $ \cos x $ will get converted to:
$ \cos x={{l}_{1}}^{2}+{{l}_{1}}{{l}_{2}}+{{m}_{1}}^{2}+{{m}_{1}}{{m}_{2}}+{{m}_{1}}{{m}_{3}}+{{n}_{1}}^{2}+{{n}_{1}}{{n}_{2}}+{{n}_{1}}{{n}_{3}} $
By rearranging the terms in above equation, we get it as:
$ \cos x=\left( {{l}_{1}}^{2}+{{m}_{1}}^{2}+{{n}_{1}}^{2} \right)+\left( {{l}_{1}}{{l}_{2}}+{{m}_{1}}{{m}_{2}}+{{n}_{1}}{{n}_{2}} \right)+\left( {{l}_{1}}{{l}_{3}}+{{m}_{1}}{{m}_{3}}+{{n}_{1}}{{n}_{3}} \right) $
By using the values of these expressions as calculated before, we get
$ \cos x=1+0+0=1 $
By applying $ {{\cos }^{-1}} $ on both sides of the equation, we get $ x=0{}^\circ $ .
Similarly, as only 1, 2, 3 positions change we can say that:
$ y=z=0{}^\circ $
By above 2 equations, we can say $ x=y=z=0 $ .
Hence, angle made by vector p with a, b, c are equal.
Option (a) is correct.
Note: (1) If you solve p.b, p.c you set the same result.
(2) The grouping of terms to use the equations known is crucial.
(3) Do the dot product carefully use $ i\cdot i=1\text{ }i\cdot j=0\text{ }i\cdot k=0 $ to solve.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

