
If there is term ${{x}^{2r}}$ in ${{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}$ , then
(a) n – 2r is a positive integral multiple of 3.
(b) n – 2r is even
(c) n – 2r is odd
(d) None of these
Answer
574.5k+ views
Hint: First of all, we will understand what is the binomial expansion and define the general form of the binomial expansion. Then we will apply binomial expansion on the given binomial ${{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}$ and try to find the general term of the binomial. We will assume that the variable is one such term is ${{x}^{2r}}$. Thus, we can equate the power of ${{x}^{2r}}$, i.e. 2r and the power of the variable in the general term and get a relation. Thus, based on the relation, we can choose one of the options.
Complete step-by-step solution:
A binomial, as the name suggests, is a polynomial with two terms. The binomial theorem is used to get the expression when a binomial is multiplied with itself n number of times.
Let (a + b) be a binomial. Suppose we multiply this binomial with itself n number of times. The resultant expression will be as follows:
$\Rightarrow $ (a + b)(a + b)(a + b)…. n times.
$\Rightarrow {{\left( a+b \right)}^{n}}$
Thus, according to the binomial expansion theorem, the expression ${{\left( a+b \right)}^{n}}$ can be expanded as follows:
$\Rightarrow {{\left( a+b \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{a}^{n}}{{b}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{a}^{n-1}}{{b}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{a}^{n-2}}{{b}^{2}}+...+\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{a}^{0}}{{b}^{n}}$
Where $\left( \begin{matrix}
n \\
r \\
\end{matrix} \right){{=}^{n}}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$
Thus, the general term (r + 1)th of the expression will be ${{T}_{r+1}}=\left( \begin{matrix}
n \\
r \\
\end{matrix} \right){{a}^{n-r}}{{b}^{r}}$ where r is a positive integer such that $0\le r\le n$.
The expression given to us is ${{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}$. This is a binomial with a = x and b = $\dfrac{1}{{{x}^{2}}}$ and n = n – 3.
Thus, we will use binomial expansion theorem to expand ${{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}$.
\[\Rightarrow {{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}=\left( \begin{matrix}
n-3 \\
0 \\
\end{matrix} \right){{\left( x \right)}^{n-3}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{0}}+\left( \begin{matrix}
n-3 \\
1 \\
\end{matrix} \right){{\left( x \right)}^{n-4}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{1}}+\left( \begin{matrix}
n-3 \\
2 \\
\end{matrix} \right){{\left( x \right)}^{n-5}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{2}}+...+\left( \begin{matrix}
n-3 \\
n-3 \\
\end{matrix} \right){{\left( x \right)}^{0}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{n-3}}\]
Where $\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{=}^{n}}{{C}_{s}}=\dfrac{\left( n-3 \right)!}{s!\left( n-s-3 \right)!}$
And the general (s + 1)th of the expression will be ${{T}_{s+1}}=\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{\left( x \right)}^{n-3-s}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{s}}$, where s is a positive integer such that $0\le s\le n-3$.
$\begin{align}
& \Rightarrow {{T}_{s+1}}=\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{\left( x \right)}^{n-3-s}}{{\left( x \right)}^{-2s}} \\
& \Rightarrow {{T}_{s+1}}=\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{\left( x \right)}^{n-3-3s}} \\
\end{align}$
Let us assume that the (s + 1)th has the variable ${{x}^{2r}}$.
$\Rightarrow c{{x}^{2r}}=\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{\left( x \right)}^{n-3-3s}}$ , where c is some constant.
Thus, since the bases are same, we can equate the powers.
$\Rightarrow $ 2r = n – 3 – 3s
$\Rightarrow $ n – 2r = 3(s + 1)
Thus, we can say that n – 2r is a positive integral multiple of 3.
Hence, option (a) is the correct option.
Note: Students are advised to be careful while using the binomial expansion theorem as it only applies when binomials are multiplied by itself. If there is a product of multiple binomials, it cannot be used.
Complete step-by-step solution:
A binomial, as the name suggests, is a polynomial with two terms. The binomial theorem is used to get the expression when a binomial is multiplied with itself n number of times.
Let (a + b) be a binomial. Suppose we multiply this binomial with itself n number of times. The resultant expression will be as follows:
$\Rightarrow $ (a + b)(a + b)(a + b)…. n times.
$\Rightarrow {{\left( a+b \right)}^{n}}$
Thus, according to the binomial expansion theorem, the expression ${{\left( a+b \right)}^{n}}$ can be expanded as follows:
$\Rightarrow {{\left( a+b \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{a}^{n}}{{b}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{a}^{n-1}}{{b}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{a}^{n-2}}{{b}^{2}}+...+\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{a}^{0}}{{b}^{n}}$
Where $\left( \begin{matrix}
n \\
r \\
\end{matrix} \right){{=}^{n}}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$
Thus, the general term (r + 1)th of the expression will be ${{T}_{r+1}}=\left( \begin{matrix}
n \\
r \\
\end{matrix} \right){{a}^{n-r}}{{b}^{r}}$ where r is a positive integer such that $0\le r\le n$.
The expression given to us is ${{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}$. This is a binomial with a = x and b = $\dfrac{1}{{{x}^{2}}}$ and n = n – 3.
Thus, we will use binomial expansion theorem to expand ${{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}$.
\[\Rightarrow {{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}=\left( \begin{matrix}
n-3 \\
0 \\
\end{matrix} \right){{\left( x \right)}^{n-3}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{0}}+\left( \begin{matrix}
n-3 \\
1 \\
\end{matrix} \right){{\left( x \right)}^{n-4}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{1}}+\left( \begin{matrix}
n-3 \\
2 \\
\end{matrix} \right){{\left( x \right)}^{n-5}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{2}}+...+\left( \begin{matrix}
n-3 \\
n-3 \\
\end{matrix} \right){{\left( x \right)}^{0}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{n-3}}\]
Where $\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{=}^{n}}{{C}_{s}}=\dfrac{\left( n-3 \right)!}{s!\left( n-s-3 \right)!}$
And the general (s + 1)th of the expression will be ${{T}_{s+1}}=\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{\left( x \right)}^{n-3-s}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{s}}$, where s is a positive integer such that $0\le s\le n-3$.
$\begin{align}
& \Rightarrow {{T}_{s+1}}=\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{\left( x \right)}^{n-3-s}}{{\left( x \right)}^{-2s}} \\
& \Rightarrow {{T}_{s+1}}=\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{\left( x \right)}^{n-3-3s}} \\
\end{align}$
Let us assume that the (s + 1)th has the variable ${{x}^{2r}}$.
$\Rightarrow c{{x}^{2r}}=\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{\left( x \right)}^{n-3-3s}}$ , where c is some constant.
Thus, since the bases are same, we can equate the powers.
$\Rightarrow $ 2r = n – 3 – 3s
$\Rightarrow $ n – 2r = 3(s + 1)
Thus, we can say that n – 2r is a positive integral multiple of 3.
Hence, option (a) is the correct option.
Note: Students are advised to be careful while using the binomial expansion theorem as it only applies when binomials are multiplied by itself. If there is a product of multiple binomials, it cannot be used.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

