
If there is term ${{x}^{2r}}$ in ${{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}$ , then
(a) n – 2r is a positive integral multiple of 3.
(b) n – 2r is even
(c) n – 2r is odd
(d) None of these
Answer
588k+ views
Hint: First of all, we will understand what is the binomial expansion and define the general form of the binomial expansion. Then we will apply binomial expansion on the given binomial ${{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}$ and try to find the general term of the binomial. We will assume that the variable is one such term is ${{x}^{2r}}$. Thus, we can equate the power of ${{x}^{2r}}$, i.e. 2r and the power of the variable in the general term and get a relation. Thus, based on the relation, we can choose one of the options.
Complete step-by-step solution:
A binomial, as the name suggests, is a polynomial with two terms. The binomial theorem is used to get the expression when a binomial is multiplied with itself n number of times.
Let (a + b) be a binomial. Suppose we multiply this binomial with itself n number of times. The resultant expression will be as follows:
$\Rightarrow $ (a + b)(a + b)(a + b)…. n times.
$\Rightarrow {{\left( a+b \right)}^{n}}$
Thus, according to the binomial expansion theorem, the expression ${{\left( a+b \right)}^{n}}$ can be expanded as follows:
$\Rightarrow {{\left( a+b \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{a}^{n}}{{b}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{a}^{n-1}}{{b}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{a}^{n-2}}{{b}^{2}}+...+\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{a}^{0}}{{b}^{n}}$
Where $\left( \begin{matrix}
n \\
r \\
\end{matrix} \right){{=}^{n}}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$
Thus, the general term (r + 1)th of the expression will be ${{T}_{r+1}}=\left( \begin{matrix}
n \\
r \\
\end{matrix} \right){{a}^{n-r}}{{b}^{r}}$ where r is a positive integer such that $0\le r\le n$.
The expression given to us is ${{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}$. This is a binomial with a = x and b = $\dfrac{1}{{{x}^{2}}}$ and n = n – 3.
Thus, we will use binomial expansion theorem to expand ${{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}$.
\[\Rightarrow {{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}=\left( \begin{matrix}
n-3 \\
0 \\
\end{matrix} \right){{\left( x \right)}^{n-3}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{0}}+\left( \begin{matrix}
n-3 \\
1 \\
\end{matrix} \right){{\left( x \right)}^{n-4}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{1}}+\left( \begin{matrix}
n-3 \\
2 \\
\end{matrix} \right){{\left( x \right)}^{n-5}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{2}}+...+\left( \begin{matrix}
n-3 \\
n-3 \\
\end{matrix} \right){{\left( x \right)}^{0}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{n-3}}\]
Where $\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{=}^{n}}{{C}_{s}}=\dfrac{\left( n-3 \right)!}{s!\left( n-s-3 \right)!}$
And the general (s + 1)th of the expression will be ${{T}_{s+1}}=\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{\left( x \right)}^{n-3-s}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{s}}$, where s is a positive integer such that $0\le s\le n-3$.
$\begin{align}
& \Rightarrow {{T}_{s+1}}=\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{\left( x \right)}^{n-3-s}}{{\left( x \right)}^{-2s}} \\
& \Rightarrow {{T}_{s+1}}=\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{\left( x \right)}^{n-3-3s}} \\
\end{align}$
Let us assume that the (s + 1)th has the variable ${{x}^{2r}}$.
$\Rightarrow c{{x}^{2r}}=\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{\left( x \right)}^{n-3-3s}}$ , where c is some constant.
Thus, since the bases are same, we can equate the powers.
$\Rightarrow $ 2r = n – 3 – 3s
$\Rightarrow $ n – 2r = 3(s + 1)
Thus, we can say that n – 2r is a positive integral multiple of 3.
Hence, option (a) is the correct option.
Note: Students are advised to be careful while using the binomial expansion theorem as it only applies when binomials are multiplied by itself. If there is a product of multiple binomials, it cannot be used.
Complete step-by-step solution:
A binomial, as the name suggests, is a polynomial with two terms. The binomial theorem is used to get the expression when a binomial is multiplied with itself n number of times.
Let (a + b) be a binomial. Suppose we multiply this binomial with itself n number of times. The resultant expression will be as follows:
$\Rightarrow $ (a + b)(a + b)(a + b)…. n times.
$\Rightarrow {{\left( a+b \right)}^{n}}$
Thus, according to the binomial expansion theorem, the expression ${{\left( a+b \right)}^{n}}$ can be expanded as follows:
$\Rightarrow {{\left( a+b \right)}^{n}}=\left( \begin{matrix}
n \\
0 \\
\end{matrix} \right){{a}^{n}}{{b}^{0}}+\left( \begin{matrix}
n \\
1 \\
\end{matrix} \right){{a}^{n-1}}{{b}^{1}}+\left( \begin{matrix}
n \\
2 \\
\end{matrix} \right){{a}^{n-2}}{{b}^{2}}+...+\left( \begin{matrix}
n \\
n \\
\end{matrix} \right){{a}^{0}}{{b}^{n}}$
Where $\left( \begin{matrix}
n \\
r \\
\end{matrix} \right){{=}^{n}}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$
Thus, the general term (r + 1)th of the expression will be ${{T}_{r+1}}=\left( \begin{matrix}
n \\
r \\
\end{matrix} \right){{a}^{n-r}}{{b}^{r}}$ where r is a positive integer such that $0\le r\le n$.
The expression given to us is ${{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}$. This is a binomial with a = x and b = $\dfrac{1}{{{x}^{2}}}$ and n = n – 3.
Thus, we will use binomial expansion theorem to expand ${{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}$.
\[\Rightarrow {{\left( x+\dfrac{1}{{{x}^{2}}} \right)}^{n-3}}=\left( \begin{matrix}
n-3 \\
0 \\
\end{matrix} \right){{\left( x \right)}^{n-3}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{0}}+\left( \begin{matrix}
n-3 \\
1 \\
\end{matrix} \right){{\left( x \right)}^{n-4}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{1}}+\left( \begin{matrix}
n-3 \\
2 \\
\end{matrix} \right){{\left( x \right)}^{n-5}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{2}}+...+\left( \begin{matrix}
n-3 \\
n-3 \\
\end{matrix} \right){{\left( x \right)}^{0}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{n-3}}\]
Where $\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{=}^{n}}{{C}_{s}}=\dfrac{\left( n-3 \right)!}{s!\left( n-s-3 \right)!}$
And the general (s + 1)th of the expression will be ${{T}_{s+1}}=\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{\left( x \right)}^{n-3-s}}{{\left( \dfrac{1}{{{x}^{2}}} \right)}^{s}}$, where s is a positive integer such that $0\le s\le n-3$.
$\begin{align}
& \Rightarrow {{T}_{s+1}}=\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{\left( x \right)}^{n-3-s}}{{\left( x \right)}^{-2s}} \\
& \Rightarrow {{T}_{s+1}}=\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{\left( x \right)}^{n-3-3s}} \\
\end{align}$
Let us assume that the (s + 1)th has the variable ${{x}^{2r}}$.
$\Rightarrow c{{x}^{2r}}=\left( \begin{matrix}
n-3 \\
s \\
\end{matrix} \right){{\left( x \right)}^{n-3-3s}}$ , where c is some constant.
Thus, since the bases are same, we can equate the powers.
$\Rightarrow $ 2r = n – 3 – 3s
$\Rightarrow $ n – 2r = 3(s + 1)
Thus, we can say that n – 2r is a positive integral multiple of 3.
Hence, option (a) is the correct option.
Note: Students are advised to be careful while using the binomial expansion theorem as it only applies when binomials are multiplied by itself. If there is a product of multiple binomials, it cannot be used.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

