
If the volume of a Tetrahedron formed by coterminous edges $\vec{a},\vec{b},\vec{c}$ is 2,then the volume of parallelepiped formed by coterminous edges $\vec{a}\times \vec{b},\vec{b}\times \vec{c},\vec{c}\times \vec{a}$ is
(a) 72
(b) 144
(c) 36
(d) 108
Answer
579.9k+ views
Hint: First, we will draw the figure of a tetrahedron. Then we should know the formula of volume of tetrahedron formed by coterminous edges is given as $\dfrac{1}{6}\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ . Using this, we will get value of $\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ . Then for finding value of $\vec{a}\times \vec{b},\vec{b}\times \vec{c},\vec{c}\times \vec{a}$ , formula to be used is given as ${{\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]}^{2}}$ . Thus, on substituting the values and solving we will get the answer. The general formula of volume of parallelepiped having coterminous edges $\vec{a},\vec{b},\vec{c}$ is given as $\left| \left( \vec{a}\times \vec{b} \right)\cdot \vec{c} \right|$ .
Complete step-by-step answer:
Here, we will draw a tetrahedron figure.
We should know that volume of Tetrahedron formed by coterminous edges $\vec{a},\vec{b},\vec{c}$ is given as $\dfrac{1}{6}\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ .
We are also given that this volume is equal to 2. So, we can write it as
$\dfrac{1}{6}\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]=2$
On solving this, we get as
$\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]=2\times 6=12$ ………………….(1)
Now, we have to find value of parallelepiped formed by coterminous edges $\vec{a}\times \vec{b},\vec{b}\times \vec{c},\vec{c}\times \vec{a}$ . So, we can write this as by replacing $\vec{a}$ as $\vec{a}\times \vec{b}$ , $\vec{b}$ as $\vec{b}\times \vec{c}$ , $\vec{c}$ as $\vec{c}\times \vec{a}$ in the general formula $\left| \left( \vec{a}\times \vec{b} \right)\cdot \vec{c} \right|$ which is basically written as $\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ . So, after replacing the values we will get as
$\left[ \begin{matrix}
\vec{a}\times \vec{b} & \vec{b}\times \vec{c} & \vec{c}\times \vec{a} \\
\end{matrix} \right]$
So, we can write it as $\left( \vec{a}\times \vec{b} \right).\left( \left( \vec{b}\times \vec{c} \right)\times \left( \vec{c}\times \vec{a} \right) \right)$ which is known as quadrupole product of four product.
We have formula i.e. $\left( \vec{a}\times \vec{b} \right)\times \left( \vec{c}\times \vec{d} \right)=\left[ \begin{matrix}
a & b & d \\
\end{matrix} \right]c-\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]d$ . So, on applying this we get as
$\left( \vec{a}\times \vec{b} \right).\left( \left( \vec{b}\times \vec{c} \right)\times \left( \vec{c}\times \vec{a} \right) \right)=\left( \vec{a}\times \vec{b} \right)\cdot \left( \left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]c-\left[ \begin{matrix}
b & c & c \\
\end{matrix} \right]a \right)$
We also know that if two out of three vectors are the same then that is equal to zero. So, we can write it as
$\left( \vec{a}\times \vec{b} \right).\left( \left( \vec{b}\times \vec{c} \right)\times \left( \vec{c}\times \vec{a} \right) \right)=\left( \vec{a}\times \vec{b} \right)\cdot \left( \left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]c \right)=\left( \left( \vec{a}\times \vec{b} \right)\cdot c \right)\left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]$
So, we get as $=\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]\left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]$ . We know the cumulative rule of box i.e. given as $\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]=\left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]=\left[ \begin{matrix}
c & a & b \\
\end{matrix} \right]$
So, we will get as
${{\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]}^{2}}$ ………………..(2)
So, we will directly substitute the value in above equation, and we get as
$\left[ \begin{matrix}
\vec{a}\times \vec{b} & \vec{b}\times \vec{c} & {\vec{c}} \\
\end{matrix}\times \vec{a} \right]={{\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]}^{2}}={{\left[ 12 \right]}^{2}}$
Thus, on solving we get as
$\left[ \begin{matrix}
\vec{a}\times \vec{b} & \vec{b}\times \vec{c} & {\vec{c}} \\
\end{matrix}\times \vec{a} \right]=144$
Hence, option (b) is the correct answer.
Note: Students sometimes do not read question carefully and end up finding the value of $\left[ \begin{matrix}
\vec{a}+\vec{b} & \vec{b}+\vec{c} & {\vec{c}} \\
\end{matrix}+\vec{a} \right]$ . For finding this formula is almost similar as compare to finding value of $\left[ \begin{matrix}
\vec{a}\times \vec{b} & \vec{b}\times \vec{c} & \vec{c}\times \vec{a} \\
\end{matrix} \right]$ i.e. $2\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ . By placing value in the formula answer will be 24 which is wrong. So, do not solve it in a hurry and please read the question carefully and then attempt it.
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ . Using this, we will get value of $\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ . Then for finding value of $\vec{a}\times \vec{b},\vec{b}\times \vec{c},\vec{c}\times \vec{a}$ , formula to be used is given as ${{\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]}^{2}}$ . Thus, on substituting the values and solving we will get the answer. The general formula of volume of parallelepiped having coterminous edges $\vec{a},\vec{b},\vec{c}$ is given as $\left| \left( \vec{a}\times \vec{b} \right)\cdot \vec{c} \right|$ .
Complete step-by-step answer:
Here, we will draw a tetrahedron figure.
We should know that volume of Tetrahedron formed by coterminous edges $\vec{a},\vec{b},\vec{c}$ is given as $\dfrac{1}{6}\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ .
We are also given that this volume is equal to 2. So, we can write it as
$\dfrac{1}{6}\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]=2$
On solving this, we get as
$\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]=2\times 6=12$ ………………….(1)
Now, we have to find value of parallelepiped formed by coterminous edges $\vec{a}\times \vec{b},\vec{b}\times \vec{c},\vec{c}\times \vec{a}$ . So, we can write this as by replacing $\vec{a}$ as $\vec{a}\times \vec{b}$ , $\vec{b}$ as $\vec{b}\times \vec{c}$ , $\vec{c}$ as $\vec{c}\times \vec{a}$ in the general formula $\left| \left( \vec{a}\times \vec{b} \right)\cdot \vec{c} \right|$ which is basically written as $\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ . So, after replacing the values we will get as
$\left[ \begin{matrix}
\vec{a}\times \vec{b} & \vec{b}\times \vec{c} & \vec{c}\times \vec{a} \\
\end{matrix} \right]$
So, we can write it as $\left( \vec{a}\times \vec{b} \right).\left( \left( \vec{b}\times \vec{c} \right)\times \left( \vec{c}\times \vec{a} \right) \right)$ which is known as quadrupole product of four product.
We have formula i.e. $\left( \vec{a}\times \vec{b} \right)\times \left( \vec{c}\times \vec{d} \right)=\left[ \begin{matrix}
a & b & d \\
\end{matrix} \right]c-\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]d$ . So, on applying this we get as
$\left( \vec{a}\times \vec{b} \right).\left( \left( \vec{b}\times \vec{c} \right)\times \left( \vec{c}\times \vec{a} \right) \right)=\left( \vec{a}\times \vec{b} \right)\cdot \left( \left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]c-\left[ \begin{matrix}
b & c & c \\
\end{matrix} \right]a \right)$
We also know that if two out of three vectors are the same then that is equal to zero. So, we can write it as
$\left( \vec{a}\times \vec{b} \right).\left( \left( \vec{b}\times \vec{c} \right)\times \left( \vec{c}\times \vec{a} \right) \right)=\left( \vec{a}\times \vec{b} \right)\cdot \left( \left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]c \right)=\left( \left( \vec{a}\times \vec{b} \right)\cdot c \right)\left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]$
So, we get as $=\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]\left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]$ . We know the cumulative rule of box i.e. given as $\left[ \begin{matrix}
a & b & c \\
\end{matrix} \right]=\left[ \begin{matrix}
b & c & a \\
\end{matrix} \right]=\left[ \begin{matrix}
c & a & b \\
\end{matrix} \right]$
So, we will get as
${{\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]}^{2}}$ ………………..(2)
So, we will directly substitute the value in above equation, and we get as
$\left[ \begin{matrix}
\vec{a}\times \vec{b} & \vec{b}\times \vec{c} & {\vec{c}} \\
\end{matrix}\times \vec{a} \right]={{\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]}^{2}}={{\left[ 12 \right]}^{2}}$
Thus, on solving we get as
$\left[ \begin{matrix}
\vec{a}\times \vec{b} & \vec{b}\times \vec{c} & {\vec{c}} \\
\end{matrix}\times \vec{a} \right]=144$
Hence, option (b) is the correct answer.
Note: Students sometimes do not read question carefully and end up finding the value of $\left[ \begin{matrix}
\vec{a}+\vec{b} & \vec{b}+\vec{c} & {\vec{c}} \\
\end{matrix}+\vec{a} \right]$ . For finding this formula is almost similar as compare to finding value of $\left[ \begin{matrix}
\vec{a}\times \vec{b} & \vec{b}\times \vec{c} & \vec{c}\times \vec{a} \\
\end{matrix} \right]$ i.e. $2\left[ \begin{matrix}
{\vec{a}} & {\vec{b}} & {\vec{c}} \\
\end{matrix} \right]$ . By placing value in the formula answer will be 24 which is wrong. So, do not solve it in a hurry and please read the question carefully and then attempt it.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

